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Figure 1: (a) Illustration of our 5D spatio-directional mixture model (SDMM) that approximates incident radiance. (b) Rendering of a scene
with difficult spatio-directionally varying illumination: a tiny light source is shining upwards onto a glossy ceiling that indirectly illuminates
the scene. We compare path guiding results with and without product sampling using an additional mixture that approximates the BSDF.

Abstract
We propose a learning-based method for light-path construction in path tracing algorithms, which iteratively optimizes and
samples from what we refer to as spatio-directional Gaussian mixture models (SDMMs). In particular, we approximate incident
radiance as an online-trained 5D mixture that is accelerated by a kD-tree. Using the same framework, we approximate BSDFs
as pre-trained nD mixtures, where n is the number of BSDF parameters. Such an approach addresses two major challenges in
path-guiding models. First, the 5D radiance representation naturally captures correlation between the spatial and directional
dimensions. Such correlations are present in e.g. parallax and caustics. Second, by using a tangent-space parameterization of
Gaussians, our spatio-directional mixtures can perform approximate product sampling with arbitrarily oriented BSDFs. Existing
models are only able to do this by either foregoing anisotropy of the mixture components or by representing the radiance field
in local (normal aligned) coordinates, which both make the radiance field more difficult to learn. An additional benefit of the
tangent-space parameterization is that each individual Gaussian is mapped to the solid sphere with low distortion near its center
of mass. Our method performs especially well on scenes with small, localized luminaires that induce high spatio-directional
correlation in the incident radiance.

CCS Concepts
• Computing methodologies → Ray tracing; Mixture models; • Mathematics of computing → Sequential Monte Carlo
methods; Expectation maximization; Bayesian computation;

1. Introduction

Path tracing is used to synthesize photorealistic images in a wide
variety of settings, such as movie production, product and architec-
ture visualization, and, more recently, video games. The efficiency
of path tracing is a product of two factors: (i) the rate at which paths

†Research completed prior to joining Facebook.

are traced and (ii) how well the distribution of traced paths matches
the actual distribution of light throughout the virtual scene. The key
challenge is thus to devise an algorithm that accurately samples the
distribution of light while at the same time remaining performant.
Adaptive importance sampling techniques (usually referred to as
“path guiding” in the specific context of rendering) present a promis-
ing approach to this problem – instead of relying on heuristics,



A. Dodik & M. Papas & C. Öztireli & T. Müller / Path Guiding Using Spatio-Directional Mixture Models

they use information gathered during rendering to learn a sampling
distribution which better suits the scene at hand.

Our method belongs to the class of path-guiding techniques which
represent factors of the rendering integrand using mixture models.
In contrast to prior works which use 2D directional mixture mod-
els [VKŠ*14; HEV*16], our method includes additional parameters
of the rendering equation as further dimensions of the mixture model.
Specifically, we propose representing

• incident radiance (Li) using a 5D Gaussian mixture model, and
• BSDFs ( fs) using nD Gaussian mixture models,

where n is the number of parameters of the BSDF.

The first benefit of such an aproach is that a 5D mixture model
naturally captures spatio-directional correlation (e.g. parallax) of the
incident radiance Li(ωi,x). While recent work focuses on parallax
as a specific instance of spatio-directional correlation, it effetively
demonstrates the importance of accurately capturing it during path
tracing [RHL20]. Additionally, we found nD mixture models to
be well-suited for compactly representing parametric BSDFs, as
they both vary smoothly as a function of their parameters in most
cases [HES*18]. Such a parametric BSDF representation is desir-
able, because it avoids the need of pre-computing multiple distinct
BSDF models for every encountered material configuration. Lastly,
after both models have been trained, we can perform closed-form
product sampling.

In this paper, we describe solutions to overcome three challenges
that would otherwise make the use of higher-dimensional mixture
models difficult:

Product sampling with mixed-orientation Gaussians. In order
to compute the product of Gaussian distributions, they must live
in the same coordinates. Herholz et al. [HEV*16] achieve this by
parameterizing incident radiance Li as well as the BSDFs fs as 2D
directional distributions in the shading frame, where the surface nor-
mal always points towards (0,0,1). This approach is not possible
for us, because Li is approximated by a global 5D spatio-directional
mixture model, where all mixture components must share the same
(global) coordinate frame. For product sampling, we must therefore
rotate the mixture into the shading frame on-the-fly for every sam-
pling decision. Such a rotation inherently introduces distortion due
to the non-linear change of variables induced by changing the 2D pa-
rameterization of the solid sphere. To minimize this distortion near
the center of mass of each Gaussian, we (i) adopt a tangent-space pa-
rameterization [Pen06; STM14] as a substitute for commonly used
parameterizations (e.g. cylindrical), and (ii) we propose to transform
covariance matrices via a first-order Taylor approximation of the
change of variables to further reduce the remaining distortion.

Training of conditional distributions. In path guiding, we are in-
terested in 2D importance-sampling distributions. Thus, when repre-
senting incident radiance Li(ωi,x) as a 5D distribution p(ωi,x), we
ultimately only make use of the 2D conditioned distribution p(ωi |x).
The same holds true for BSDFs. Unfortunately, the optimization of
conditional distributions is highly non-linear and difficult [SPK05].
Instead of attacking this difficulty head-on, we side-step it by opti-
mizing our high-dimensional joint distributions using the expecta-
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Figure 2: Comparison of our representation with previous work. In
(a) we visualize a 2D incident radiance field with one spatial and
one angular dimension (x,ω). The two points x0 and x1 are directly
illuminated by an area light. (b) to (d) visualize how the incident
radiance field is represented as a function of x and ω in previous
and our work. In this setup, (b) approximate the angular variation of
incident radiance with two 1D GMMs at discrete spatial positions,
(c) discretize both dimensions in a 2D adaptive hierarchical data
structure and finally, our method in (d) represents the entire spatio-
angular domain with a 2D GMM which captures the correlation
between the dimensions.

tion maximization (EM) algorithm and only conditioning on-the-fly
for each sampling decision.

Scaling towards thousands of mixture components. The afore-
mentioned conditioning is the conceptual equivalent to looking up
a 2D distribution in a higher-dimensional cache such as done by
Vorba et al. [VKŠ*14]. When done with brute force, its cost scales
linearly with the number of mixture components. It is therefore an
expensive operation that needs acceleration through an appropriate
data structure, especially when the high-dimensional mixture con-
sists of thousands of components, which is needed to represent a
function as complicated as the incident radiance. We use a contin-
ually evolving kD-tree over the conditional dimensions (e.g. the 3
spatial dimensions of incident radiance) to accelerate the on-the-fly
conditioning operation to practical speed.

To summarize, the contributions of this paper include

• the use of spatio-directional mixture models for approximating
the incident radiance and BSDFs in product path guiding, which
is made practical by
• a directional tangent-space parameterization that admits low dis-

tortion under rotation, and
• a kD-tree acceleration data structure for efficient on-the-fly con-

ditioning and EM training.
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2. Related Work

Existing approaches to importance sampling the rendering integral
range from analytic techniques, such as bi-directional path construc-
tion [LW93], Markov chain sampling [Vea97], multiple importance
sampling [VG95], and BSDF models [HD14; WMLT07], to data-
driven techniques, such as path guiding.

Path guiding. “Path guiding” techniques apply principles of adap-
tive importance sampling by iteratively

1. tracing an initial set of paths,
2. fitting an approximate radiance or product model to these paths,
3. and then using the model to importance sample further paths.

Such techniques were pioneered by Jensen [Jen95], who rasterized a
photon map into hemispherical grids for importance sampling, and
Lafortune and Willems [LW95], who quantized radiance estimates
into a spatio-directional 5D tree that can be used both as a control
variate and for importance sampling. More recently, path-guiding
techniques surged in popularity after Vorba et al. [VKŠ*14] demon-
strated that unidirectional path guiding can match bi-directional tech-
niques in terms of sample quality—a boon to production rendering,
which heavily relies on unidirectional tracing. Consequently, many
production renderers support path guiding nowadays [VHH*19].

In our work, we adopt several breakthroughs of recent works
on path guiding. We perform reinforcement-learning-style iterated
rendering [DK18; MGN17], where the rendering iterations are com-
bined with an inverse-variance weighting [Mül19]. Furthermore,
we use a spatial acceleration tree structure that adapts to the sam-
ple density [HZE*19], and we train Gaussian mixture models to
approximate incident radiance [VKŠ*14] within the leaves of that
spatial tree. Lastly, we train another Gaussian mixture model to
approximate BSDFs and we perform closed-form sampling of the
product between the BSDF and the radiance models [HEV*16].

Spatio-directional effects. Initial path-guiding approaches mod-
eled spatio-directional correlations implicitly by subdividing
space [LW95; Jen95; VKŠ*14; HP02; DK18; MGN17]. More
explicit modeling of such correlations came with primary sam-
ple space [ZZ19; MMR*19; GBBE18] and path space ap-
proaches [RHJD18], reprojection-based techniques [RHL20] as
well as attempts at directly representing the full 5D radiance or
7D product using neural networks [MMR*19; MRNK20]. Our ap-
proach is most similar to the latter category—we also explicitly
model the 5D radiance field—but rather than using neural networks
we use a mixture of 5D Gaussians. It is worth contrasting our data-
driven 5D mixtures to the reprojected 2D mixtures of Ruppert et
al. [RHL20]. Reprojection constitutes an accurate closed-form so-
lution when its underlying assumptions are valid, i.e. when the
perceived origin is near-diffuse and the intermediate transport is
spatially linear. This is the case with emitters that are for example
directly visible from the shading location or hidden behind flat mir-
rors or thin sheets of dielectrics. However, when these assumptions
are violated, e.g. in caustics caused by curved specular reflectors,
the data-driven approach is the more general one (see Figure 12).
Admittedly, such cases are rare in practice and do not result in com-
plete failure—additional mixture components can compensate for
erroneous reprojection—yet we believe the two approaches can be
benefitially combined in the future.

Mixture models. Mixture models have a long and successful his-
tory for various uses in computer graphics. Thus, for brevity, we
will focus only on work that utilizes mixture models within the
context of path guiding. Hey et al. [HP02] were the first to propose
a mixture model for path guiding: a mixture of cone-shaped distri-
butions seeded by a photon map. Vorba et al. [VKŠ*14] proposed
to use a Gaussian mixture due to its ability to approximate sparse
radiance estimates using the expectation maximization (EM) opti-
mization algorithm. They used an appproach similar to the general
adaptive importance sampling algorithm called mixture population
Monte Carlo, by Cappé et al. [CDG*08]. Later approaches exploited
the closed-form product of Gaussian mixtures to perform product
sampling with the BSDF, where the BSDF is approximated by an
auxiliary Gaussian [HEV*16] or skewed Gaussian [HES*18] mix-
ture. Alternatively, mutivariate Gaussians can also parameterize the
distribution of entire paths [RHJD18], elegantly capturing spatio-
directional correlations. However, the high-dimensional space of
paths is difficult to cover densely, constraining the approach to those
paths whose interactions are near-specular and thereby have a low
effective dimensionality.

Similarly to Gaussian mixtures, mixtures of von Mises-Fisher
distributions can also represent incident radiance, the BSDF (or
phase function), and their product [HZE*19; RHL20]. Von Mises-
Fisher distributions have the key advantage that their domain is
the solid sphere S2 rather than Euclidean space, enabling their use
without a spherical parameterization that could introduce unwanted
distortion. For path guiding, an additional crucial benefit of living in
S2 is that they can be trivially rotated, permitting product sampling
between a world-space radiance representation and a local-space
BSDF (or phase function) representation.

Our method seeks the same property for product sampling: the
ability to rotate the mixture model freely in S2. However, we also de-
sire the ability to model anisotropy with few mixture components as
well as the ability to condition on additional Euclidean dimensions,
e.g. the 3 spatial dimensions in the 5D spatio-directional radiance
distribution. These requirements disqualify the isotropic von Mises-
Fisher distributions, as well as other possible spherical candidates,
such as the Bingham distribution [Bin74] (undesirable symmetry) or
anisotropic spherical Gaussians [XSD*13] (difficult conditioning).
Instead, we rely on a tangent-space Gaussian mixture model [Pen06;
STM14], which we will describe in detail in Section 3.1.

3. Methodology

We are interested in using Monte Carlo integration to solve the
reflection integral

Ls(ωo,x) =
∫
S2

Li(ωi,x) fs(ωi,ωo,φ(x))cos(γ)dωi , (1)

where ωo is the reflected direction, ωi is the direction of incident
radiance, γ is its angle with the surface normal, x is the shading
location, and φ(x) are the parameters of the BSDF at that location.

In order to improve the efficiency of said Monte Carlo integration,
we would like to importance sample according to a probability
density function (PDF) that is approximately proportional to the
integrand, i.e. our goal is to find

p(ωi |ωo,x)∝ Li(ωi,x) fs(ωi,ωo,φ(x))cos(γ) . (2)
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Figure 3: (a) A 2-component example of a tangent-space Gaussian
mixture model. Each Gaussian component is parameterized by a
unit-length mean vector µk, pointing to its position on the sphere,
and a covariance matrix Σk describing the Gaussian’s shape in the
corresponding tangent space of the sphere. (b) The µ-centered tan-
gent space is a circular 2D parameterization of the surface of the
sphere. World-space directions ω are transformed to tangent-space
directions ν and back via ν = logµ(ω) and ω = expµ(ν).

We approach this goal by decomposing it into two sub-goals: (i)
learning the incident radiance Li as a 5D Gaussian mixture model
and (ii) learning the BSDFs fs as nD Gaussian mixture models,
where n is the total number of dimensions of ωi, ωo, and φ:

pLi(ωi,x)∝ Li(ωi,x) (3)

p fs(ωi,ωo,φ)∝ fs(ωi,ωo,φ(x))cos(γ) . (4)

We then approximately sample according to Equation (2) by
conditioning the approximations pLi and p fs on (ωo,x,φ(x)) and
then computing their closed-form product distribution, i.e.

p(ωi |ωo,x)∝ pLi(ωi |x) p fs(ωi |ωo,φ(x)) . (5)

Next, we will discuss each of these steps in detail.

3.1. Tangent-Space Gaussian Mixtures

Since we represent incident radiance using a spatio-directional 5D
mixture model as opposed to caches that are associated with geo-
metric surfaces, we are forced to adopt a global “world-space” pa-
rameterization of the incident radiance. In order to compute product
sampling between world-space radiance and a locally parameterized
BSDF, we must be able to rotate the mixtures to the same coordinate
frame. To this end, we build upon spherical tangent-space Gaussian
mixture models [Pen06; STM14]. For example, in a tangent-space
model on a sphere with K mixture components, the k-th Gaussian is
parameterized by a 3D world-space unit-length mean vector µk ∈ S2

and a 2×2 tangent-space covariance matrix Σk ∈ R2×2. The mean
vector µk determines the tangent space that the covariance matrix
Σk lives in; see Figure 3a for an illustration.

Crucially, this representation can be rotated into any local shading
frame for product sampling: one simply rotates the mean vectors µk
to the local frame and applies the azimuthal part of the rotation to
the covariance matrices Σk.

Tangent spaces. We define the tangent space at some mean vector
µ, as a circular 2D parameterization of the surface of the sphere (see
Figure 3b): one can map from the µ-centered tangent space to the
sphere and back, using the so-called log and exp maps, which are
each other’s inverse:

ν = logµ(ω) , ω = expµ(ν) . (6)

In the following we will assume that ω ∈ S2 is a direction vector
and ν ∈ R2 is a coordinate in a tangent space with ‖ν‖< π. In this
case, we can use the azimuthal equidistant projection to define our
log and exp maps, same as Simo-Serra et al. [STM14]:

logµ(ω) =

(
ω
	
x

sinc(cos−1(ω	z ))
,

ω
	
y

sinc(cos−1(ω	z ))

)ᵀ
,

ω
	 = Rµω ,

(7)

expµ(ν) = R−1
µ

(
νu sinc(‖ν‖), νv sinc(‖ν‖), cos(‖ν‖)

)ᵀ
, (8)

where Rµ is the rotation matrix that rotates µ to (0,0,1) and sinc is
the unnormalized sinc function.

The crucial property that justifies the use of exponential and
logarithm maps is that the length of the shortest path (i.e. shortest
geodesic) connecting µ with any ω along the manifold (e.g. sphere)
equals the distance between the origin of the tangent space at µ and
the corresponding ν

†. This property enables the optimization of
tangent-space Gaussians using the expectation maximization (EM)
algorithm [STM14], which we will describe in Section 3.2.

Density evaluation. Given the parameters µ and Σ of a spherical
tangent-space Gaussian, its density in tangent space is the regular
bi-variate Gaussian density, centered at the tangent space’s origin:

pt(ν) := e−
1
2 ν
ᵀ

Σ
−1

ν
/(

2π
√

detΣ

)
. (9)

Its density with respect to the solid-angle measure, which we need
for importance sampling of directions in path tracing, is in turn
obtained through a change of variables:

pΩ(ω) = pt(ν)
√
|detG| , (10)

where G is the matrix representation of the metric tensor of the
tangent space. Specifically, it is the 2×2 matrix G = JᵀJ, where
J is the 3×2 Jacobian matrix of the the exponential map, expµ,

evaluated at ν.‡ We provide the closed form of the Jacobian matrix
in Appendix A.

Thus, the solid-angle density of a mixture of K tangent-space
Gaussians is

p(ω) :=
K

∑
k=1

πk pΩ
k (ω) , (11)

† Note that, for spheres, this property holds as long as ‖ν‖ < π, or, more
generally, ν does not cross the cut locus at µ
‡ The use of the metric tensor in a change of variables generalizes the well-
known use of the absolute determinant of the Jacobian matrix to the case of
transforming between manifolds; in our case, we are mapping from a 2D
tangent space to 3D unit vectors.
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where πk is the weight of the k-th mixture component, such that
∑k πk = 1, and pΩ

k (ω) is its solid-angle density.

Sampling. Sampling of a tangent-space mixture is simple com-
pared to evaluating its density. It consists of three steps: (i) sample
the mixture component index k proportional to πk, then (ii) sample
the tangent-space direction ν ∝ pt

k(ν), and lastly (iii) convert the
sampled ν to world space by evaluating ω = expµk

(ν).

Special care must be taken in step (ii), since the bijectivity of the
azimuthal equidistant projection breaks down at the radius π: due
to the equidistance property, the projection reaches the antipodal
point of µk at the radius π. Therefore, for the purpose of Monte
Carlo integration using the density defined in Equation (11), if the
sampled ν lies outside the radius π, the sample must be discarded.

Note that all bounded parameterizations of the sphere (e.g. cylin-
drical coordinates) require discarding samples that lie outisde of
their domain. In fact, the tangent space formulation has an advantage
in this regard, because the center of mass of each Gaussian is located
in the center of its tangent space, leading to only a vanishingly small
number of discarded samples in practice (on average 0.021%).

Additional dimensions. When we want a tangent-space Gaussian
mixture to admit additional, Euclidean dimensions, e.g. the position
x when approximating incident radiance as pLi(ωi,x) ∝∼ Li(ωi,x),
the above equations stay almost exactly the same.

In this case, Equation (9) becomes the general multi-variate Gaus-
sian distribution, and the exponential and logarithm maps of the
Euclidian dimensions are defined as translations by their mean
vector. For example, the 3D world-space position is mapped to its
tangent space as logµ (x) := x− µx, where µx is the mean of the
Gaussian distribution in 3D world space. By representing Euclidean
dimensions in their own tangent space, all dimensions—regardless
of whether they are spherical or Euclidean—can be treated using
the same tangent-space formulae.

3.2. Learning of Conditional Mixture Models using EM

We are ultimately interested in obtaining the conditional 2D
importance-sampling distributions pLi(ωi |x) and p fs(ωi |ωo,φ).
However, directly optimizing the conditional distributions turns
out to be difficult [SPK05]. Therefore, we instead optimize the cor-
responding joint distributions pLi(ωi,x) and p fs(ωi,ωo,φ), and sub-
sequently condition them on-the-fly during rendering using standard
closed-form Gaussian conditioning. To optimize the joint distribu-
tions, we utilize the well established expectation maximization (EM)
algorithm. The following paragraphs briefly introduce EM and then
focus on our adaptations to make it compatible with tangent-space
Gaussian mixtures.

Mini-batch expectation maximization. We use the mini-batch
variant of EM [Dod20; NFM20] due to its online training capability§.
Mini-batch EM operates by repeatedly sampling a mini-batch of M
samples from a Gaussian mixture parameterized by (πk,µk,Σk) and

§ We discuss an alternative option, stepwise EM [CM09; Cap11; VKŠ*14],
in Section 6.

then computing from that mini-batch a triplet of sufficient statistics
(S(0)k ,S(1)k ,S(2)k ) for each mixture component k. From these suffi-
cient statistics we then compute the updated mixture parameters,
(π̂k, µ̂k, Σ̂k).

Given a mini-batch of samples x1, . . . ,xM ∈ RD with correspond-
ing Monte Carlo weights w1, . . . ,wM ∈ R, the sufficient statistics
are computed as weighted sums

S(0)k =
∑

M
i wiSki

∑
M
i wi

, S(1)k =
∑

M
i wiSkixi

∑
M
i wi

, S(2)k =
∑

M
i wiSkixix

ᵀ
i

∑
M
i wi

,

Ski :=
πk pt

k(xi)

pt(xi)
, (12)

and, thereafter, the updated parameters (π̂k, µ̂k, Σ̂k) are computed as

π̂k =
S(0)k

∑
K
i S(0)i

, µ̂k =
S(1)k

S(0)k

, Σ̂k =
S(2)k

S(0)k

− µ̂kµ̂ᵀk . (13)

Unfortunately, a derivation of the above equations is beyond the
scope of this paper. We refer to detailed descriptions of mini-batch
EM based on sufficient statistics [Dod20; NFM20].

Sufficient statistics in tangent spaces. When the mixture compo-
nents are defined in tangent space, special care must be taken when
computing the first- and second-moment sufficient statistics S(1)k and

S(2)k . Given a mini-batch of direction vectors ωi ∈ S2, i∈ {1, . . . ,M},
the first-moment sufficient statistic S(1)k of the k-th component must
be computed in the corresponding µk-centered tangent-space coordi-
nates νi = logµk

(ωi) and, subsequently, the updated mean vector µ̂k
must be computed by translating back from the µk-centered tangent-
space to world space:

S(1)k =
∑

M
i wiSkiνi

∑
M
i wi

, µ̂k = expµk

(
S(1)k

/
S(0)k

)
. (14)

Only after the updated mean vector µ̂k has been computed can the
second-moment sufficient statistic S(2)k be computed. This is the

case, because the statistic S(2)k determines the updated covariance
matrix Σ̂k, which must be centered around µ̂k, not µk. Formally:

S(2)k =
∑

M
i wiSkiν̂iν̂

ᵀ
i

∑
M
i wi

, Σ̂k = S(2)k

/
S(0)k (15)

where ν̂i = logµ̂k
(ωi) and Ski must use updated densities w.r.t. to

the µ̂k-centered tangent space. Note, that the subtraction of µ̂kµ̂ᵀk
is missing (c.f. Equation (13)), because S(2)k was computed in the
already µ̂k-centered tangent space.

As previously stated in Section 3.1, additional Euclidean dimen-
sions, such as the 3D position x, can also be treated with the new
formulae if the log and exp maps map them to their respective
tangent space by translating them by their mean vector.

3.3. Efficient Conditioning and EM

After the joint distribution pLi(ωi,x) has been optimized using EM,
we seek to efficiently condition it on x on-the-fly during rendering
to be able to importance sample pLi(ωi |x). However, the compu-
tational cost of conditioning is linear in the number of mixture
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(a) Single mixture (b) Mixture partitioned by kD-tree

Figure 4: Illustrations of the spatial components of our model. In (a)
we visualize a small fraction of the mixture components within a
single model and their spatial overlap. Due to the high amount of
overlap, the computational requirements of updating and querying
the model can be linear to the total number of components. By using
a kD-tree spatial subdivision scheme (b) we can significantly reduce
these computational requirements while still capturing correlations
within a leaf node.

components, and our 5D Gaussian mixtures require thousands of
components to cover the incident radiance field well. Thus, when
done naïvely for all thousands of components, conditioning is ex-
ceedingly expensive.

The key observation that makes conditioning tractable is that only
those mixture components whose spatial mean component µx

k is in
close proximity to x meaningfully affect the conditional distribution
pLi(ωi |x). Conditioning can thus be accelerated by only operating
on a local neighborhood of mixture components.

The EM algorithm, like conditioning, also suffers from an O(K)
cost and can therefore also be accelerated by operating indepen-
dently on local neighborhoods of Gaussians. At first, it may seem
like restricting EM to local neighborhoods might destroy the desir-
able properties of spatio-directional mixtures, but this is a largely
incorrect notion. It merely prevents individual mixture components
from covering large spatial regions, which is rarely appropriate in
high-fidelity virtual scenes. Most importantly, it does not remove
the key ability of spatio-directional mixtures to accurately model
spatio-directional correlations such as parallax within their neigh-
borhoods.

To partition our 5D Gaussian mixture components into local
neighborhoods, we adopt the spatial kD-tree partitioning scheme
proposed by Herholz et al. [HZE*19]. We subdivide and collapse
the kD-tree according to the number of observed samples within
each leaf—same as Herholz et al.—and within each leaf, we place
16 of our 5D mixture components, as illustrated in Figure 4b. Given
a query position x, conditioning is thus only performed on the
16 Gaussians found within the kD-tree’s leaf node at x. Likewise,
given a mini-batch of spatio-directional samples for EM training,
the samples are partitioned into their respective kD-tree leaves and
mini-batch EM is applied to each leaf independently.

In Figure 5 we demonstrate that using the kD-tree yields the
desired performance benefits without compromising on the quality
benefits of the spatio-directional radiance representation.

SDMM DMM

Global kD-tree kD-tree

MAPE: 0.219 0.225 0.427
render time: 15h 3.0m 1.9m

Figure 5: Subdividing our spatio-directional mixture model by a kD-
tree (middle) unlocks similarly low noise as using a single global
mixture (left) at a fraction of the cost—one that is comparable
to placing purely directional mixtures in the same kD-tree (right).
All mixture models use a total of roughly 16000 components and
were rendered with 1024spp. Additional comparisons of spatio-
directional versus directional mixtures are available in the supple-
mentary material.

3.4. Product Sampling from Mixed-Orientation Gaussians

After conditioning pLi(ωi |x) and p fs(ωi |ωo,φ), the last step is
computing their product distribution such that it can be importance
sampled (for the details of how p fs is conditioned in practice, please
see Section 4.1).

To do so, we must first rotate both mixtures into the same coordi-
nate frame, which is achieved by applying the appropriate rotation
matrix to the mean vectors µk of either the incident-radiance or the
BSDF distribution. In the following, we will assume that such a
rotation has already been performed and the two distributions are in
the same directional coordinate frame.

To compute the product distribution of the radiance approxima-
tion pLi(ωi |x) and the BSDF approximation p fs(ωi |ωo,φ), one has
to compute the product between each pair of mixture components.
Let us consider a single such pair, where one component is param-
eterized by (µ1,Σ1) and the other component is parameterized by
(µ2,Σ2).

To compute the product of these two components, they must be
expressed within the same tangent space. Without loss of generality,
we choose to parameterize the second component in the µ1-centered
tangent space.

Mapping covariances to other tangent spaces. In the µ1-centered
tangent space, the second mean vector µ2 is easily expressed using
the exp-map as expµ1

(µ2), but the question of how Σ2 should trans-
form from one tangent space to the other is more difficult to answer.
The most naïve approach would be to simply leave it unchanged,
which we found to be too inaccurate; see Figure 6b. The correct
approach, on the other hand, would be to re-fit the covariance matrix
through EM in the new tangent space, which would be impractically
slow to do for each sampling decision.
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Figure 6: Various approaches to updating the covariance matrix Σ of a tangent-space Gaussian distribution with mean µ to a mini-batch of
samples. We visualize the Gaussian distribution as well as the mini-batch in world space (top row) and in the µ-centered tangent space (bottom
row). (a) The state of the Gaussian distribution prior to the EM step. (b) When Σ is naïvely updated using the regular EM equations (12) and (13),
it admits an incorrect shape due to the distortion of mapping from the tangent space centered around the old mean µ to the one centered around
the new mean µ̂. (c) Updating Σ in the tangent space centered around the new mean µ̂ as per Equation (15) results in an accurate fit but is
computationally costly, because the mini-batch must be transformed into the µ̂-centered tangent space first. (d) Updating Σ using the regular
EM equations (same as (b)) and subsequently transforming it into the µ̂-centered tangent space using our first-order approximation from
Equation (17) results in an accurate fit with much lower cost.

logµ1

mult.

expµ1

Figure 7: The product of two tangent-space Gaussians that are pa-
rameterized by (µ1,Σ1) and (µ2,Σ2) is computed in the µ1-centered
tangent space according to Equation (17). Then, samples for path
guiding can be drawn and mapped to world-space by the expµ1

-map.

We aim for a middle ground by considering the R2 7→R2 mapping
from one tangent space to the other:

ν1 = logµ1
expµ2

(ν2) (16)

If this mapping was linear, it could be represented by a 2×2 matrix
J and the correct transformation of the covariance matrix could
be computed efficiently as JΣ2Jᵀ. However, the mapping is not

actually linear, so we propose setting J to a local linear approxi-
mation—the Jacobian matrix—of logµ1

expµ2
. We demonstrate the

accuracy of this approach in Figure 6d, where we compute J as
J := Jlogµ1

(expµ2
(0))Jexpµ2

(0) with Jlog and Jexp being defined in
Appendix A.

Thus, the product distribution of a pair of components defined by
(µ1,Σ1) and (µ2,Σ2) can be approximated in the µ1-centered tangent
space as the product of the following two Gaussian distributions:

N
(
0,Σ1

)
⊗N

(
logµ1

(µ2),JΣ2Jᵀ
)
, (17)

Figure 7 illustrates this procedure. Here, it is worth pointing out
that the approximation error of our proposed covariance transforma-
tion JΣ2Jᵀ only applies to the second mixture component. Thus, in
practice, however small the approximation error may be, one could
choose the second mixture component to be the one where the error
is most tolerable. Alternatively, one might consider the computa-
tional cost of computing JΣ2Jᵀ. In our case, due to our usage of
SIMD vectorization, it is benefitial to choose the second mixture
to be the one with fewer components, enabling us to vectorize over
the components of the first mixture. We obtained the best overall
efficiency by setting the first mixture to the incident radiance and
the second mixture to the BSDF.

Efficient tangent-space covariance update. The first-order ap-
proximation that enables accurate product sampling can also be
used improve performance: in Section 3.2, we state that the updated
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covariance matrix Σ̂ must be computed in the tangent space centered
around the newly computed mean µ̂ as opposed to the previous mean
µ; see Equation (15). This computation is expensive, because every
data point in the mini batch as well as its corresponding probabil-
ity density must be mapped into the µ̂-centered tangent space. We
side-step this expensive computation by computing Σ̂ in the origi-
nal µ-centered tangent space and then approximately transforming
it into the µ̂-centered tangent space using the same first-order ap-
proximation that we use in Equation (17) for product sampling. In
Figure 6, we visually demonstrate the accuracy of this approach.

4. Implementation in a Renderer

As mentioned in Section 3, our algorithm requires us to train both a
BSDF model p fs(ωi,ωo,φ) as well a model of the incident radiance
pLi(ωi,x). In this section, we detail these procedures.

4.1. BSDF Learning

Our approach to BSDF learning allows us, in theory, to fit a single
nD mixture model to each type of BSDF that the renderer supports,
where n is the number of BSDF parameters. For each sampling
decision we can then specialize the previously learned general BSDF
models by conditioning them on-the-fly on their parameters φ(x)
at the shading location x. This way, we avoid a scene-specific pre-
computation of BSDFs, as well as opaquely handle both spatially-
uniform and spatially-varying BSDFs.

In practice, to keep the number of dimensions manageable, we
limit ourselves to isotropic BSDFs. Our model has not been tested
on anisotropic BSDFs. It might be necessary to increase the number
of Gaussian components to represent such models, which would be
computationally prohibitive for our current approach. One could use
a kD-tree over the BSDF parameter space, similar to the one we use
over the spatial dimensions of incident radiance, or an alternative
pruning framework, such as that of Herholz et al. [HES*18]; see the
discussion in Section 6 for more details.

BSDF input sampling. A BSDF mixture model is fitted by repeat-
edly sampling batches of BSDF inputs and then applying mini-batch
EM to the mixture model. Random BSDF parameters φ as well as
the spherical coordinates of the outgoing direction ωo are sampled
uniformly. Subsequently, ωi is sampled using the BSDF’s built-in
importance sampling routine and mini-batch EM is applied.

Pruning before product sampling. Since product sampling re-
quires computing the product distribution between each pair of
mixture components within the BSDF and the incident-radiance
model, the computational cost of product sampling can grow quadrat-
ically in the number of overall mixture components. To suppress this
quadratic growth, we employ a simple but effective strategy: after
conditioning the BSDF model on its parameters, we perform product
sampling using only the two resulting BSDF mixture components
with largest magnitude.

4.2. Online Learning of the Radiance During Path Tracing

Path tracing of an N-spp image is performed in a fixed number of
iterations that compute 4 spp each. The i-th iteration is importance

sampled (i.e. path guided) using the product of the current state
pi

Li
of the incident-radiance model and the pre-computed BSDF

distribution p fs , each conditioned on-the-fly on the local shading
parameters (see Sections 3.3 and 3.4). The purpose of dividing
path tracing into iterations is to facilitate periodic refinement of
the incident-radiance model: after each iteration, the kD-tree is
adapted to the path distribution and a subsequent mini-batch EM step
is performed to produce a better distribution pi+1

Li
for importance

sampling in the next iteration.

Spatial component of the radiance distribution. Our 5D SD-
MMs should learn pLi(ωi,x) = pLi(ωi |x)pLi(x). However, during
rendering, we only have access to pLi(ωi |x) in closed form. The
spatial distribution of samples, pLi(x), is defined by the ray-tracing
procedure and is not known in a general setting. While it would be
possible to approximate the spatial distribution using a k-nearest-
neighbor estimate, and then use that estimate to approximate the
correct Monte Carlo weights in Eq. 12 [Dod20], we have found
the computational overhead of this approach to overshadow any
possible gains due the quality of the learned distribution. Instead,
in our work, we assume a uniform distribution within each kD-tree
leaf node. In practice, this assumption becomes increasingly correct
as the size of the kD-tree leaf nodes decreases during training.

Refinement of the spatial kD-tree. During each iteration, we col-
lect the encountered path vertices such that at the end of the iteration,
each kD-tree leaf contains a list of all vertices that were located
within it. If the number of path vertices M in any leaf is larger than
a threshold c, that leaf is subdivided along the axis with the largest
variation of vertex positions, where the subdivision plane is located
at the mean position along that axis [HZE*19]. After subdivision,
the vertices are redistributed into the two new leaves, which are then
further subdivided recursively until they have fewer than c vertices.
The mixture model from the parent node is copied into the newly
created leaves—the subsequent EM procedure will adapt each copy
to the different light distributions in each leaf. We empirically found
c = 16000 to yield good results, which is of similar magnitude as
the subdivision constant used in PPG [MGN17].

Mini-batch EM fitting. Before the next iteration starts, we select
all leaves that accumulated M ≥ 16 vertices—for numeric stability—
and independently apply a single mini-batch EM step to each of
them, where the mini-batch consists of all M vertices contained in
the respective leaf node. The vertices are subsequently cleared. The
EM step follows the procedure outlined in Section 3.2, where each
vertex’s incident-radiance estimate corresponds to its weights w, and
its spatial and directional coordinates correspond to Euclidean and
tangent-space dimensions, respectively.

Note, that the EM step can be computed in parallel across all leaf
nodes, because the mixtures are independent from each other.

Early stopping of training. Our incident-radiance mixture model
converges to a good guiding distribution relatively early in the ren-
dering process. Thus, we stop the mini-batch EM training after the
first 1/4th of the rendering budget is exhausted to avoid its cost.
During the last 3/4ths of the rendering budget, our mixture model
is no longer trained and merely used for guiding.
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4.3. Robust EM Optimization of the Incident-Radiance PDF

While the EM algorithm is theoretically elegant and converges
quickly, it is prone to get stuck in undesirable local minima, making
it unstable in our online-learning setting. The instability becomes
worse when operating on noisy Monte Carlo weights, which are
common in rendering when estimating incident radiance (e.g. “fire-
flies”). We therefore found it paramount to employ the following
array of regularization techniques to robustify the EM training of
our incident radiance approximation.

Initialization. We aim at initializing the Gaussian mixture such
that it evenly covers the 5D domain (no “clumping”) to prevent
EM from converging to a local optimum that misses a mode of Li.
To this end, and to avoid lock contention, prior to rendering, the
kD-tree is pre-subdivided 3 times at the center of each axis, resulting
in a regular 8×8×8 tesselation of the scene’s bounding box. After
each render iteration, the we split the kD-tree and distribute the
collected samples to the newly created leaf nodes. If a leaf node is
uninitialized and contains at least 16 path vertices, we initialize a
mixture model containing 16 Gaussians inside of that leaf node. If a
leaf node contains fewer than 16 samples, the initialization of the
corresponding mixture model is postponed until 16 samples were
received to ensure stability in noisy scenes.

After 16 vertices were received, initialization consists of the fol-
lowing three steps. First, a slightly modified k-means++ [AV07]
scheme is applied to the vertices to select 2 spatial coordinates x1,x2
that lie on a geometric surface, have a minimum distance from each
other (if possible), and that roughly follow the spatial distribution
of radiance; see Appendix C for details. Then, at each one of the 2
chosen positions, 8 Gaussians are initialized whose directional mean
components ω1, . . . ,ω8 cover the sphere roughly evenly. Formally,
the set of initial mean vectors is {x1,x2}×{ω1, . . . ,ω8}.

Third, the covariance matrix at each mean vector (x,ω) is initial-
ized to satisfy the following desired properties. It should be

• isotropic in the tangent plane of the surface at x and in the ω-
centered directional tangent space, and
• flat along the surface normal at x.

To this end, in the tangent plane, the covariance matrix’s radius is
set to be proportional to the size of the leaf node containing it, and
inversely proportional to the number of distinct spatial coordinates
in the mixture (in our case 2). In contrast, we make the covariance
matrix as thin as possible along the direction of the surface normal,
to avoid mixing samples from close-by surfaces facing each other. In
the remaining ω-centered tangent space dimensions, the covariance
matrix’s radius is inversely proportional to the number of distinct
directional coordinates in the mixture model, i.e. 8. See Appendix B
for the mathematical details of this procedure.

Averaging of sufficient statistics across minibatches. In Sec-
tion 3.2, we described the computation of a per-mixture-component
triplet of sufficient statistics (S(0),S(1),S(2)) as sample averages
over mini batches. In practice, such sample averages are often too
noisy to be directly useful for EM optimization. Thus, similar to pre-
vious work [CM09; Cap11; VKŠ*14], we additionally average the
sufficient statistics across mini batches using the Robbins-Monroe

algorithm [RM51], which ensures that EM converges under mild
assumptions¶. Let Ŝ(i)k, j be the averaged sufficient statistics of the kth

mixture component after processing the j-th mini batch; they are
computed as

Ŝ(i)k, j = (1−η j) · Ŝ
(i)
k, j−1 +η j ·S

(i)
k , (18)

where η j controls the strength of averaging. While any sequence
η j that satisfies ∑

∞
j η j =∞∧∑

∞
j η

2
j <∞ makes EM converge in

theory, we adopt the sequence η j = (β j+1)−α inspired by common
practice [CM09; Cap11; VKŠ*14; NFM20]. We set α = 0.5 as done
in previous work, β = 0.1 to achieve a long tail (averaging over
many iterations to reduce noise).

Special care must be taken when averaging the second-moment
sufficient statistics in tangent spaces. The second-moment statistic
of the current mini batch S(2) is defined in the tangent space centered
about the current mean vector µ j , whereas the previously computed

statistic Ŝ(2)j−1 is defined in the tangent space centered about the

previous mean-vector µ j−1. Thus, prior to averaging, Ŝ(i)j−1 must first
be transformed into the µ j-centered tangent space. To this end, we
use the same first-order approximation that we use in Equation (17),
resulting in the following modified update rule for the tangent-space
components of the second-moment sufficient statistics:

Ŝ(2)j = η j · JŜ(2)j−1Jᵀ+(1−η j) ·S(2) . (19)

In the above equation, J is the Jacobian matrix of logµ j−1
expµ j

at 0.

Lastly, same as Vorba et al. [VKŠ*14], we also apply the Robbins-
Monroe averaging scheme (with the same sequence η j) to the ap-
proximate normalization factor that is used in the M-step.

Maximum a-posteriori EM. To learn incident radiance, we use
maximum a-posteriori (MAP) EM, which is an extension of the
maximum-likelihood EM algorithm that we outlined in Section 3.2.
Unlike maximum-likelihood EM, MAP EM takes “prior” informa-
tion about the mixture parameters (πk,µk,Σk) into account. Such
prior information regularizes the optimization by biasing EM to-
wards solutions that resemble a chosen prior distribution. Following
Gauvain and Lee [GL94], we choose a prior Dirichlet distribution
over the weights πk and a prior inverse Wishart distribution over the
covariances Σk (no prior is used over µk). This formulation results
in a closed-form MAP EM optimization that matches maximum-
likelihood EM, except for the following modifications to the tangent-
space update formulae of the mixture weights π̂k and the covariance
matrices Σ̂k:

π̂k =
β jq+S(0)k

Kβ jq+∑
K
i S(0)i

, Σ̂k =
β jB+S(2)k

β ja+S(0)k

. (20)

The scalars q, a and the matrix B parameterize the prior distribu-
tions and β j progressively downscales the strength of the priors as
the training step j increases. This downscaling is a consequence
of adding more samples to a Bayesian estimator, and in practice

¶ The assumptions include a uniform bound on S(i), which is not necessarily
met in rendering. Nonetheless, we observe stable behavior in practice.
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removes the bias introduced by the prior distributions when suffi-
ciently many data points have been observed for a robust maximum
likelihood estimate.

We choose the prior parameters

q = 1/K , a = 5/K , B = adiag(0.1,0.1,1,1,1)×10−4 , (21)

where the first two entries on the diagonal of B are responsible
for regularizing the directional tangent-space dimensions ν and
the remaining entries are responsible for the spatial dimensions
x—hence their different scale.

The relatively large Dirichlet prior q ensures that each mixture
component is weighted roughly equally in the early stages of the
optimization, whereas the relatively large Wishart prior parameter a
ensures that the covariance matrix does not fluctuate too strongly due
to initially chosen mixture weights. Since S(0)i is roughly inversely
proportional to the number of mixture components K, we include
a division by K in our definitions of q and a. The effect is that the
relative prior strength per mixture component is constant.

Our choice of a small Wishart prior parameter B serves the pur-
pose of preventing the covariance matrices from collapsing when
few samples are available, e.g. onto a firefly. Other than that (e.g. as
soon as S(0)k is sufficiently large), the small value of B does not no-
ticeably restrict the shape of the learned covariance matrices. Thus,
accurately tailoring the spatial components of B to the scene scale
is usually not necessary. Nonetheless, we normalize x to span the
range [0,1]3 within the scene’s bounding box, and make the initial-
ization of the covariance matrices proportional to the size of the
kD-tree leaf nodes containing them. In extreme cases, such as an
expansive outdoor environment, it could possibly be necessary to
also additionally scale the spatial components of B by the size of
the corresponding kD-tree leaf node. We experimented with such an
approach, but had difficulties in making it work well across all our
scenes due to numerical instabilities.

5. Results

We implemented our method within the Mitsuba renderer [Jak10],
making heavy use of SIMD vectorization via Enoki [Jak19] for
computations pertaining to our mixture models. Our reference im-
plementation will be released publicly upon publication of this work.

All images in these section were generated at a resolution of
640×360 pixels, using 1024 samples per pixel, on an Intel Xeon
W-2135 CPU with 12 cores and 64 GB RAM. The reference images
were rendered with standard path tracing using a very large sample
count that was chosen for each scene such that the reference image
has no visible left-over noise. All comparisons have next-event
estimation and Russian roulette disabled and the number of path
vertices is bounded to 10.

We compare our method with the improved version [Mül19] of
“Practical Path Guiding” (PPG) [MGN17] as well as with parallax-
aware von Mises-Fisher mixtures [RHL20] trained on radiance
(VMM radiance).

When comparing with PPG, we disable PPG’s learning of the
BSDF selection probability to ensure a fair comparison to our work,
which does not currently have this feature, but could be extended

with it. Instead, we use the fixed BSDF sampling fraction of 50% for
PPG and for our radiance-based guiding scheme (SDMM radiance),
and 30% for our product-based guiding scheme (SDMM product).

Like PPG, our method automatically chooses when to terminate
training based on the overall rendering budget and is designed to
include all iterations—training and rendering—in the final image.
The implementation of Ruppert et al. [RHL20], however, has distinct
training and rendering components, which puts it at a disadvantage
in online-training comparisons. Therefore, in addition to comparing
with Ruppert et al. [RHL20] at equal sample counts (Table 1 and
Figure 9) in an online-training setting, we provide an equal training-
and rendering time comparison in Table 2 and Figure 10.

Online training comparisons. In Table 1 and Figure 9 we compare
PPG, radiance-based VMMs, and our method with (SDMM product)
and without (SDMM radiance) product guiding, on 12 virtual scenes
that have varied illumination characteristics. For each method and
scene, we report the mean absolute percentage error (MAPE), the
render time, and the speedup vs. PPG at reaching the lowest common
MAPE value. MAPE is defined as 1

N ∑
N
i=1 |vi− v̂i|/(v̂i+ε), where v̂i

is the value of the i-th pixel in the reference image, vi is the value of
the i-th rendered pixel, and ε = 0.01 prevents near-black pixels from
dominating the metric. A 2× smaller MAPE loosely corresponds to
4× faster rendering.

A common trend of our approach is that it achieves the lower per-
sample error than PPG in all scenes and achieves slightly lower error
than radiance-based VMMs in 8 our of 12 scenes. Product-based
guiding further reduces the error, but at great computational cost.

As expected, our method performs well when there exists a large
degree of spatio-directional correlation in the incident radiance,
e.g. as induced by small, local luminaires in the BOOKSHELF, the
CORNELL BOX, the WATER CAUSTIC, and the YET ANOTHER

BOX scenes; see the insets in Figure 9.

However, the computational overhead of our technique is signifi-
cantly larger than that of PPG and VMMs. Taking the render time
into account and comparing time to equal error, our radiance- and
product-based guiding approaches only outperform PPG in 6 out
of 12 scenes, with our radiance- and product-based guiding per-
forming competitively with each other. In Figure 8, we reinforce
this observation by plotting MAPE against render time and against
the number of samples per pixel. We report additional metrics and
false-color error visualizations in our supplementary HTML-based
results viewer.

Offline training comparisons. To provide a fair equal-time ecom-
parison with Ruppert et al. [RHL20], we match their experimental
setup where each method trains and renders for a fixed, equal time;
see Table 2 and Figure 10. We have made no attempt to fine-tune our
method to this paradigm, and no attempt to modify their method to
include training iterations into the final image. Instead, we use both
methods as-is, and compare the images generated after training has
been terminated in both methods. To ensure fairness, we disabled
the inverse-variance based combination of iterations for our method
and instead weigh all samples equally.

We note that Ruppert et al. [RHL20] outperform our algorithm
on the majority of the scenes. Their algorithm is significantly faster
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Table 1: Comparison of our method (SDMM radiance & product) with practical path guiding (PPG) [Mül19] and parallax-aware von
Mises-Fisher mixtures (VMM radiance) [RHL20] using the respective authors’ implementations. We rendered each scene with 1024 spp,
where the training and rendering stages of each method (except for PPG) were allotted 252 and 772 spp. We report mean absolute percentage
error (MAPE), render time, and the speedup vs. PPG at reaching the lowest common MAPE value. For Ruppert et al., we omit the speedup due
to their separation of training and rendering. Instead, we report equal-time results in Figure 10. The best entries are highlighted in bold letters.
Our radiance-based method (SDMM radiance) achieves lower error than PPG and on average similar error as radiance-based VMMs, but at the
cost of increased render time. Incorporating the product (SDMM product) reduces MAPE further while again increasing the render time.

[Mül19] [RHL20] Ours

PPG VMM radiance SDMM radiance SDMM product

BATHROOM 0.192 4.2m (1.0×) 0.148 3.1m 0.161 6.5m (0.9×) 0.115 12m (0.9×)
BEDROOM 0.060 3.2m (1.0×) 0.062 2.7m 0.054 4.5m (0.9×) 0.051 7.1m (0.7×)

BOOKSHELF 0.132 4.6m (1.0×) 0.105 3.4m 0.111 6.6m (1.0×) 0.085 11m (1.0×)
BOTTLE 0.274 3.3m (1.0×) 0.152 2.5m 0.205 4.3m (1.8×) 0.171 9.5m (1.3×)

CORNELL BOX 0.069 1.1m (1.0×) 0.044 43s 0.026 1.6m (3.2×) 0.020 2.2m (3.2×)
GLOSSY KITCHEN 0.316 2.8m (1.0×) 0.250 1.9m 0.205 4.4m (1.7×) 0.151 11m (1.3×)

NECKLACE 0.187 1.1m (1.0×) 0.127 1.1m 0.181 1.5m (0.8×) 0.157 2.7m (0.8×)
SWIMMING POOL 0.076 2.1m (1.0×) 0.079 2.0m 0.068 2.9m (0.9×) 0.058 4.0m (1.0×)

TORUS 0.078 1.1m (1.0×) 0.085 1.1m 0.073 1.5m (0.9×) 0.072 2.0m (0.8×)
VEACH DOOR 0.221 2.1m (1.0×) 0.286 1.5m 0.188 3.6m (0.8×) 0.122 8.3m (0.8×)

WATER CAUSTIC 0.549 1.8m (1.0×) 0.639 1.9m 0.379 2.6m (2.8×) 0.370 3.8m (2.4×)
YET ANOTHER BOX 0.560 1.3m (1.0×) 0.080 1.1m 0.068 2.4m (15.5×) 0.050 5.2m (9.2×)

.1

1

M
A

P
E

Bedroom Bookshelf Bottle Cornell Box Bathroom Glossy Cornell Box

16 512 1024
spp

.1

1

M
A

P
E

Glossy Kitchen

16 512 1024
spp

Necklace

16 512 1024
spp

Swimming Pool

16 512 1024
spp

Torus

16 512 1024
spp

Veach Door

16 512 1024
spp

Water Caustic

(a) MAPE vs. samples per pixel

50 100 150

.1

1

M
A

P
E

Bedroom

100 200

Bookshelf

50 100 150 200

Bottle

20 40 60

Cornell Box

100 200

Bathroom

20 40 60

Glossy Cornell Box

50 100 150
seconds

.1

1

M
A

P
E

Glossy Kitchen

20 40 60
seconds

Necklace

50 100
seconds

Swimming Pool

20 40 60
seconds

Torus

50 100
seconds

Veach Door

50 100
seconds

Water Caustic

PPG SDMM radiance SDMM product

(b) MAPE vs. render time

Figure 8: We analyze the convergence behavior of our radiance- and product-based guiding algorithms by plotting MAPE (a) against the
number of samples per pixel and (b) against the render time. (a) At equal sample counts, our algorithms consistently outperform PPG. (b)
However, at equal render time, we are mostly on par with PPG due to our larger computational overhead. In scenes with strong spatio-directional
correlation in the incident radiance, our algorithm significantly outperforms PPG (CORNELL BOX, BOOKSHELF, WATER CAUSTIC, YET

ANOTHER BOX, GLOSSY KITCHEN).
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MAPE: 0.316 0.250 0.205 0.151
render time: 2.8m 1.9m 4.4m 11m

speedup vs. PPG at equal MAPE: 1.000 — 1.731 1.303
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O
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L

MAPE: 0.076 0.079 0.068 0.058
render time: 2.1m 2.0m 2.9m 4.0m

speedup vs. PPG at equal MAPE: 1.000 — 0.917 0.981

V
E
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C

H
D

O
O

R

MAPE: 0.221 0.286 0.188 0.122
render time: 2.1m 1.5m 3.6m 8.3m

speedup vs. PPG at equal MAPE: 1.000 — 0.795 0.789

W
A

T
E

R
C

A
U

S
T

IC

MAPE: 0.549 0.639 0.379 0.370
render time: 1.8m 1.9m 2.6m 3.8m

speedup vs. PPG at equal MAPE: 1.000 — 2.818 2.416

Figure 9: Visual comparison of the same experimental setup as in Table 1. For Ruppert et al., we omit the speedup due to their separation of
training and rendering. Instead, we report equal-time results in Figure 10. Our radiance-based method (SDMM radiance) consistently achieves
lower error than PPG and on average similar error as radiance-based VMMs. Incorporating the product (SDMM product) reduces the error
further. However, the computational overhead of our methods is larger than that of the other methods, leading to VMMs performing best at
equal time. As expected, our methods perform better when the incident radiance exhibits significant spatio-directional correlation (WATER

CAUSTIC, BOOKSHELF, and GLOSSY KITCHEN) and performs worse in the opposite case, e.g. environment lighting in the SWIMMING POOL.
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Table 2: Comparison of radiance-based VMMs [RHL20] with our
SDMMs at equal training and rendering time. For both methods, we
report mean absolute percentage error (MAPE) as well as training +
rendering time. Due to their much lower computational cost, VMMs
produce lower error than SDMMs on most scenes.

Ruppert et al. [RHL20] SDMM Radiance (Ours)

BATHROOM 0.104 1.8m+4.7m 0.179 1.8m+4.7m
BEDROOM 0.054 1.4m+3.0m 0.059 1.4m+3.0m

BOOKSHELF 0.080 1.8m+4.8m 0.121 1.8m+4.8m
BOTTLE 0.116 1.1m+3.2m 0.213 1.1m+3.2m

CORNELL BOX 0.032 31s +1.1m 0.029 31s +1.1m
GLOSSY KITCHEN 0.176 1.1m+3.3m 0.224 1.1m+3.3m

NECKLACE 0.115 27s +1.0m 0.183 27s +1.0m
SWIMMING POOL 0.073 55s +2.0m 0.073 55s +2.0m

TORUS 0.078 34s + 59s 0.074 34s + 59s
VEACH DOOR 0.182 1.0m+2.6m 0.206 1.0m+2.6m

WATER CAUSTIC 0.515 37s +2.0m 0.395 37s +2.0m
YET ANOTHER BOX 0.056 36s +1.8m 0.070 36s +1.8m

Ruppert et al. SDMM (Ours) Reference

MAPE: 0.104 0.179
training + rendering time: 1.8m + 4.7m 1.8m + 4.7m
training + rendering spp: 508 + 1480 252 + 772

MAPE: 0.054 0.059
training + rendering time: 1.4m + 3.0m 1.4m + 3.0m
training + rendering spp: 428 + 1112 252 + 772

MAPE: 0.515 0.395
training + rendering time: 37s + 2.0m 37s + 2.0m
training + rendering spp: 436 + 1592 252 + 772

Figure 10: Visual comparison of the same experimental setup as in
Table 2 for three selected scenes.

than ours, meaning that it is able to render far more samples in
the same time compared as ours. Thus, even though the quality of
learned mixture models is comparable—as evidenced by the equal
sample count comparison Figure 9—their method is more practical
in most of our test scenes.

Quality of the guiding distribution. In Figure 11, we visualize
the learned spatio-directional mixture model in 3 scenes. For each
scene, we show the 2D distributions obtained by conditioning the
mixture model on 2 indicated spatial locations. The mixture model
is not only accurate, but it also captures high-frequency spatio-
directional correlation, which we illustrate in our supplementary
video by smoothly varying the spatial coordinate that the model is
conditioned on.

6. Discussion and Future Work

Mini-batch EM versus stepwise EM. Stepwise EM [CM09],
later extended to robustly handle weighted samples by Vorba et
al. [VKŠ*14], is an alternative online EM algorithm that could be
used instead of mini-batch EM to train SDMM. The difference be-
tween the two algorithms is the frequency of the Robbins-Monroe
update of the sufficient statistics Equation (18): in stepwise EM, the
update is performed per sample, whereas in mini-batch EM, it is
performed per mini-batch.

Because the aforementioned update is expensive in tangent spaces
(due to Equation (19)), we prefer using mini-batch EM. Another
argument in favor of mini-batch EM is that stepwise EM unduly
weights earlier samples within the same batch higher due to them
experiencing the Robbins-Monroe update earlier, despite them being
sampled from the same distribution. This uneven averaging of the
sufficient statistics of the batch unnecessarily increases the variance
of the optimization.

Practicality of SDMM. Compared with PPG [Mül19; MGN17],
we demonstrated superior equal-sample-count error of both our
radiance- and product-based guiding approaches. However, the com-
putational overhead of our Mitsuba implementation results in better
overall efficiency on only a subset of the scenes. Compared with
VMMs [RHL20], the difference is even larger: while we achieve
similar error at equal sample counts, their lower computational cost
leads to better efficiency than ours in most scenes. The practicality
of spatio-directional mixture models is thus limited and further re-
search into efficient implementations and approximations is needed.

To this end, we believe there are a promising number of opti-
mizations that can still be made, such as automatic pruning of the
product mixture [HEV*16]. Finally, the computational bottleneck
may shift when more complex scenes are rendered, since the cost of
ray tracing and shading will be larger.

Combination with Reprojection. While our data-driven approach
of learning 5D mixtures may seem in contrast with the reprojection
of 2D mixtures [RHL20], we believe that the two approaches are
not mutually exclusive. In particular, there are situations in which
the reprojection heuristic breaks down. Lensing effects are one
such example, in which the appropriate hemispherical movement is
actually the reverse of what reprojection would predict; we show an
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BEDROOM BOOKSHELF YET ANOTHER BOX

PPG SDMM DMM PPG SDMM DMM PPG SDMM DMM

Figure 11: Learned directional PDFs, conditioned on two spatial locations per scene, visualized as false-color images in spherical coordinates.
We compare our learned distributions (SDMM) with those learned by PPG and by a purely directional version of our mixture model (DMM). As
expected, the SDMMs produce sharper distributions than the spatially marginalized DMMs without exhibiting discretization artifacts like PPG
does—especially in the difficult YET ANOTHER BOX scene. Zooming in is recommended. The SDMMs also smoothly capture high-frequency
spatio-directional correlation, which we illustrate in our supplementary video by smoothly varying the queried spatial coordinate.

VMM radiance [RHL20] SDMM radiance (Ours)

MAPE: 0.172 MAPE: 0.130

Figure 12: While the parallax heuristic of Ruppert et al. [RHL20] is
cheap and accurate in most situations, certain effects, such as lensing,
can not only result in non-linear parallax, but even invert its direction.
Such effects are rarely relevant in practice, but we nonetheless show
one such occurrence: the caustic in the YET ANOTHER BOX scene.
The lower noise of our method at an equal number of samples is
indicative of a locally more accurate fit to incident radiance.

example in Figure 12. While lensing effects occur relatively rarely
in practice, this example demonstrates one the benefits of using a
data-driven approach compared to hand-crafted hauristics. Thus, we
believe that one could use 5D mixtures to learn an offset on top of
the reprojections of Ruppert et al. [RHL20], fixing the rare special
cases where the assumptions of the reprojection are incorrect.

Computational implications of tangent spaces. Although prod-
uct sampling is enabled by parameterizing each Gaussian in its own
tangent space, such a per-Gaussian parameterization necessitates
the on-the-fly computation of numerous changes of variables: a
change of variables is needed whenever multiple Gaussians inter-
act, regardless of whether this interaction amounts to conditioning,

product sampling, or EM optimization. Despite the optimizations
that we already perform, these changes of variable are the compu-
tational bottleneck of our implementation. Thus, the efficiency of
our method could be greatly improved by coming up with means to
reduce the number of changes of variables, e.g. through a different
mixture model, or to compute them more efficiently.

Alternative acceleration structures The choice of placing our
Gaussians within a kD-tree was motivated by the intractable
quadratic cost of using a single global mixture; see also Figure 5.
Alternatively, the quadratic cost could also be mitigated by ignoring
Gaussians whose density is below a threshold, e.g. by placing the
Gaussians in a BVH, where the bounding volumes contain a large
percentage of each Gaussians’ mass. However, such an approach
maintains two disadvantages over our kD-tree approach: first, us-
ing a global mixture may lead to Gaussians that cover significant
portions of the scene, which result in quadratic cost regardless of ac-
celeration structure. And second, thresholding the size of Gaussians
without introducing large error is non-trivial, because the condition-
ing step may amplify small densities unpredictably. We implemented
a prototype and experimentally confirmed these difficulties [Dod20].

Extensions. Our implementation does not perform a number of
well-established extensions to path-guiding techniques to facilitate
a simple comparison with previous work. When using our algorithm
in practice, such orthogonal extensions should, however, be used.
First, next-event estimation (NEE) should be performed and the
learned guiding distribution should be optimized to complement
NEE [MMR*19]. In the context of Gaussian mixtures, Ruppert et
al. [RHL20] describe an appropriate modification to the Monte Carlo
samples that the model is trained on. Second, the BSDF sampling
fraction should be learned [Mül19] as opposed to set to a fixed
constant. Third, adjoint-driven Russian roulette and splitting [VK16]
should be performed.
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Furthermore, there are also mixture-specific techniques that could
conceivably enhance our algorithm. For example, careful splitting
and merging of mixture components could simultaneously increase
our model capacity as well as escape local minima in the EM op-
timization [RHL20]. We suspect that the splitting might only be
necessary along the directional dimensions of the SDMMs, since
the kD-tree data-structure already performs spatial splitting.

High-dimensional mixtures. We demonstrated the ability of Gaus-
sian mixtures to directly approximate the 5D incident radiance as
well as certain nD BSDF models. However, the BSDF models that
we used were relatively simple, never exceeding n = 5. In the fu-
ture, we would like to investigate the use of higher-dimensional
mixtures to capture additional variation, such as found in the 10D
Disney BSDF [Bur12], or additional dimensions in the incident
radiance, such as the wavelength in spectral rendering. Such higher-
dimensional mixtures need advanced data structures and a form
of sparsity to combat the curse of dimensionality—a good starting
point is likely the manifold framework of Herholz et al. [HES*18].

Non-linear spatio-directional dependencies. Our spatio-
directional Gaussians explicitly model correlations (i.e. linear
relationships) between the 5 dimensions of the incident radiance
field. One example of such a linear relationship if parallax. However,
the spatio-directional dimensions often also depend on each other
non-linearly, which can not be modeled by Gaussian covariance
matrices. A mixture of more sophisticated distributions may thus
exhibit more accurate fits with fewer mixture components.

7. Conclusion

We demonstrated the feasibility of using spatio-directional mixture
models for path guiding. In particular, we showed that a tangent-
space parameterization of Gaussians enables product sampling
among a 5D mixture that approximates incident radiance and nD
mixtures that approximate the BSDFs. The use of thousands of mix-
ture components—a necessity for accurately modeling the intricate
radiance field—was made practical by a kD-tree data structure.

The tangent-space Gaussian mixture performed remarkably well
in our experiments, making us hopeful that it can become an alterna-
tive to von Mises-Fisher mixtures, featuring anisotropy in addition
to rotational symmetry.

As for data-driven 5D spatio-directional mixtures: they achieve
competetive results to previous work in equal sample count compar-
isons, but are outperformed by other spatio-directional models that
recover spatio-directional correlation from reprojection [RHL20].
Nonetheless, data-driven SDMMs help in the cases where repro-
jection is inaccurate, such as lensing effects by curved, specular
geometries. This makes us hopeful that—if the overhead can be
further reduced—SDMMs can become a practical tool on a practi-
tioner’s toolbelt, e.g. by combining them with reprojection.
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Appendix A: Jacobian Matrices

The Jacobian matrices of the µ-centered logµ and expµ maps can be
derived by differentiating Equations (7) and (8), resulting in
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 ,
(23)

Jlogµ
=

1
sinc(cos−1(ω	z ))

, Jexpµ
=

cos‖ν‖− sinc‖ν‖
‖ν‖2 , (24)
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where ω
	 = Rµω and Rµ is the rotation matrix that rotates µ to

(0,0,1). We use the unnormalized sinc function.

Appendix B: Covariance Initialization

Given an initial 5D mean-vector (x,ω) of a Gaussian mixture com-
ponent, we wish to initialize its covariance matrix such that it is

• isotropic in the tangent plane of the surface at x and in the tangent
space around ω, and
• flat along the surface normal at x.

To this end, we let 90% of the mass of each Gaussian to be contained
within a certain radius, rst in the surface’s tangent plane, and rn along
the normal. More concretely, we compute the initial spatial 3×3
part of the covariance matrix as

Σ
x =

r2
stssT + r2

st ttT + r2
nnnT

χ2
3
−1

(0.9)
, (25)

where s, t,n form the basis of the local coordinate frame at the se-
lected point and χ

2
3
−1

is the inverse cumulative distribution function
of the chi-square distribution. We empirically found good results
with the values rn = 3 ·10−2, and rst = 2 · d

2 , where d is the length
of the longest side of the leaf node containing the Gaussian and the
division by 2 is due to the number of distinct spatial mean vectors
in the mixture.

The initial directional 2×2 part Σ
ω of the covariance matrix,

living in the ω-centered tangent space, is set to be isotropic and
inversely proportional to the number of directional Gaussian compo-
nents at a spacial location (in our case 8), with the diagonal entries
being equal to σ

2 = 2π

8 , resulting in the full covariance matrix

Σ =

[
Σ

ω 0
0 Σ

x

]
. (26)

Appendix C: Modified k-means++ Algorithm

The modification to the original k-means++ algorithm consists of
defining a custom distance metric D(xi,x j) between spatial positions
xi and x j that takes their surface normals ni and n j into account, as
well as defining a custom resampling probability p++(xi) that takes
the corresponding Monte Carlo weight wi of the sample at xi into
account.

Our custom distance metric extends the spatial euclidean distance
by the geodesic distance between normals:

dist(xi,x j)
2 =

(
cos−1(ni ·n j)/π

)2
+‖xi−x j‖2 , (27)

where the division by π normalizes geodesic distances to the range
[0,1]. Additionally, we enforce a poisson-disk distribution of points
by setting the distance to zero within pre-defined spatial and spheri-
cal radii Tx and Tn:

D(xi,x j) =

{
dist(xi,x j) if ‖xi−x j‖> Tn∨ cos−1(ni ·n j)> Tx ,

0 otherwise .
(28)

We empirically choose Tn = 0.2 and Tx = 1.6×10−3.

Building on top of the custom distance metric, we extend the
resampling probability p++(xi) with the Monte Carlo weight wi by
multiplying the distance to the closest neighbor x j by the clamped
Monte Carlo weight in the interval [W0,W1]:

p++(xi) = clamp(wi,W0,W1)min
j 6=i

D(xi,x j) . (29)

The clamping to the interval [W0,W1] serves the double-purpose
of allowing zero-valued (black) samples to contribute when fewer
than 3 radiance-carrying samples are nearby, as well as prevent-
ing fireflies from dominating other samples. We empirically found
W0 = 10−1 and W1 = 3 to work well.


