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Fig. 1. The Impossibagel. The mescher is a geometry representation that allows rendering and relighting impossible objects (left), as well as performing
intrinsic geometry processing operations like heat diffusion (center) and geodesic distance queries (right).

Impossible objects, geometric constructions that humans can perceive but

that cannot exist in real life, have been a topic of intrigue in visual arts,

perception, and graphics, yet no satisfying computer representation of such

objects exists. Previous work embeds impossible objects in 3D, cutting them

or twisting/bending them in the depth axis. Cutting an impossible object

changes its local geometry at the cut, which can hamper downstream graph-

ics applications, such as smoothing, while bending makes it difficult to

relight the object. Both of these can invalidate geometry operations, such

as distance computation. As an alternative, we introduce Meschers, meshes

capable of representing impossible constructions akin to those found in

M.C. Escher’s woodcuts. Our representation has a theoretical foundation in

discrete exterior calculus and supports the use-cases above, as we demon-

strate in a number of example applications. Moreover, because we can do

discrete geometry processing on our representation, we can inverse-render

impossible objects. We also compare our representation to cut and bend

representations of impossible objects.
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1 INTRODUCTION
Recent work in vision science notes that visual art often aligns less

with the laws of physics and instead makes sense only in the context

of human perception [Hertzmann 2024]. Extreme examples of this

phenomenon include impossible objects [Penrose and Penrose 1958],

such as those shown in Figure 1. Impossible objects often appear in

visual art; possibly the most famous examples are the woodcuts of

M.C. Escher [1961], whereas more recent examples include popular

media such as the film Inception and videogames Hocus and Mon-
ument Valley. Computer graphics is the computational language

of visual arts, begging the natural question of how to represent

constructions like those found in Escher’s work computationally.

At first, it might seem counterintuitive to consider the geome-

try of impossible constructions, but the impossibility only arises

when we attempt to embed impossible objects in 3D. Focusing

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0003-4391-8877
HTTPS://ORCID.ORG/0009-0009-2981-1679
HTTPS://ORCID.ORG/0000-0002-1835-3707
HTTPS://ORCID.ORG/0000-0001-6243-9543
HTTPS://ORCID.ORG/0000-0002-1925-2035
HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
https://orcid.org/0000-0003-4391-8877
https://orcid.org/0009-0009-2981-1679
https://orcid.org/0000-0002-1835-3707
https://orcid.org/0000-0001-6243-9543
https://orcid.org/0000-0002-1925-2035
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3731422
https://doi.org/10.1145/3731422


2 • Ana Dodik, Isabella Yu, Kartik Chandra, Jonathan Ragan-Kelley, Joshua Tenenbaum, Vincent Sitzmann, and Justin Solomon

on only one corner of an impossible object,

we are able to consistently perceive its local
geometry. Its shading offers locally consistent

depth and connectivity cues, e.g., a uniform

color in a region implies that the region is flat

and connected. It is only when we attempt

to assemble—i.e., integrate—local information

into a global geometry that the impossibility

arises [Crane et al. 2013; Freud et al. 2013, 2015;

Heinke et al. 2021]. What makes the object

impossible is that one cannot assign an absolute depth to every

point on its surface without cutting or bending the geometry, which

would violate the local depth cues. In fact, all previous representa-

tions of impossible objects resort to either cutting or bending (see

Section 2.1). This often breaks the geometry processing pipeline

(Figure 8).

In contrast, we set out to computationally represent impossible

objects in a way that still allows us to perform common graphics and

geometry processing tasks. To this end, we introduce the mescher,
a perceptually-inspired mesh data structure for Escheresque con-

structions. Unlike previous work, our method never integrates the

impossible object into 3D coordinates, side-stepping the need to

cut or bend the object (see Section 2.1). This means that, unlike in

previous work, common graphics operations, such as relighting and

intrinsic distance queries, behave consistently with human intuition

(Figure 8).

Discrete exterior calculus (DEC) provides a natural language for

this task and enables us to construct common discrete differential

operators on impossible objects. In particular, we represent the

relative depths of the surface of a mescher using the sum of exact and

harmonic primal 1-forms in DEC. As a consequence, meschers allow

artists to create visuals containing complex impossible objects by

relying on graphics tools they are already used to, such as Laplacian

smoothing and mesh subdivision. Our representation also allows us

to answer intrinsic shortest path queries, with potential applications

in vision science research or in path planning for video games. Lastly,

we demonstrate how the differential operators produced by our

representation enable inverse rendering of impossible objects.

In summary, our contributions are:

• A geometric representation of impossible objects built on DEC.

• The rendering and relighting of impossible objects.

• Common modeling operations of smoothing and subdivision.

• Answering distance queries on impossible objects.

• Inverse rendering of impossible objects.

• A thorough qualitative analysis, as well as comparisons with

previous methods.

2 RELATED WORK
For decades, impossible objects have captured the attention of sci-

entists [Penrose and Penrose 1958] and artists alike [Escher 1961;

Hogarth 1754; Reutersvärd 1934]. Over the years, many attempts

were made to mathematically formalize these shapes. Simon [1967]

introduced a model of human perception that involves “scanning” a

shape to determine whether or not locally plausible-looking regions

can be assembled into a globally possible whole. Similarly, Gregory

[1970] hypothesized that humans detect impossibilities through

conflicting depth hypotheses, whereas Draper [1978] conjectured

that the problem involves a violation of the assumption that the

object be spatially connected. In our paper, we phrase all of these

observations using the mathematical formalism of global integrabil-
ity (§3.1). We pose our notion of integrability in terms of differential

forms, which comprise elements of the de Rham cohomology; note

connections between cohomology groups and impossible objects

were also explored by Penrose [1993]. Lastly, similar to our treat-

ment (§3.1, S3.4), Térouanne [1984] attempt to explain perception

of impossible objects in terms of a 2D tesselation of the image and

a graph ordering of the image segments.

2.1 Rendering impossible objects
Over the past two decades, the computer graphics community has

developed many methods for rendering impossible objects. These

methods naturally divide into two categories. Methods in the first

category (which we call “cut representations”) approach the prob-

lem by dissecting an impossible object into a collection of distinct

parts, each of which is locally-consistent, but which are assembled

into a globally-inconsistent whole [Khoh and Kovesi 1999; Lai et al.

2015; Li et al. 2024; Owada and Fujiki 2008; Savransky et al. 1999].

Taylor [2020] extends this approach to compute plausible-looking

shadows for impossible objects. The mescher can be seen as the

limit of this part-based approach, where each triangle is considered

its own “part.” This decomposition allows us to perform a variety of

powerful intrinsic geometry processing operations on impossible

objects.

The second category of methods (which we call “bent represen-
tations”) generates view-dependent deformations of a possible ob-

ject’s underlying geometry, such that from a particular non-generic

viewpoint the object appears impossible [Elber 2011; Sánchez-Reyes

and Chacón 2020; Wu et al. 2010]. These methods differ from ours

in that the geometry they represent is different from what people

perceive. For example, while people intuitively see all faces of the

Penrose triangle as flat, these methods curve those faces to make

them match up correctly in 3D space. Intrinsic geometry process-

ing operations on such representations (e.g. computing Gaussian

curvature) do not produce intuitive results, as they do on meschers.

In Section 4.6, we show how we can recover both of these types

of representations from meschers.

2.2 Modeling and reconstructing impossible objects
How can we produce new impossible objects to render? One ap-

proach is to create user interfaces to model impossible objects. Sugi-

hara [1997] designed a user interface for modeling view-dependent

impossible objects, which can then be folded from paper. Owada and

Fujiki [2008], Inglis [2014] and Taylor [2020] offer user interfaces

for interactively constructing and rendering complex impossible

objects. Li et al. [2024] procedurally design impossible structures

that satisfy simple user-provided geometric constraints. Following

this line of work, we allow users to create and edit meschers using

operations like subdivision and smoothing.

Another approach to producing impossible objects is to auto-

matically reconstruct their geometry from 2D images. Karpenko
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and Hughes [2006] attempt to reconstruct a (possible) mesh from

a line drawing of an impossible object, but find that the resulting

mesh appears “flattened” and does not produce the experience of

impossibility. As we will show in Section 4.5, the mescher enables

direct inverse rendering of impossible objects. Weber* et al. [2024]

reconstruct 3D scenes from geometrically-inconsistent cartoon ani-

mations by deforming the input images to maximize consistency.

In contrast, the mescher enables recovering inconsistent geometry

without warping the input.

2.3 Perception of impossible objects
Psychologists and vision scientists have long studied how people

perceive impossible objects. The subjective experience of viewing an

impossible object is driven by the spatial locality of vision. Because

of foveation in the human retina, we perceive the world through

small, spatially-localized fixations that we assemble into an abstract

global percept [Biederman 1985]. Early visual processing extracts lo-

cal cues like shading and occlusion, which provides the visual system

with some information about geometry and depth. This information

can be assembled into what Marr [1982] calls a “2.5-D sketch”: a

precise representation of local surface orientation, combined with a

coarse representation of global depth. Impossible objects surprise

us by providing valid local depth cues that fail to integrate into a

consistent global depth embedding [Freud et al. 2013, 2015; Heinke

et al. 2021]. Hence, the mescher represents local geometric proper-

ties (e.g. orientation and curvature) without committing to global

depths.

Importantly, our visual system is robust enough to make partial

local sense of such objects [Koenderink 1998; Linton et al. 2023]—

when faced with an impossible object, we only detect the “impossi-

bility” when an attempt to integrate multiple fixations leads to an

obvious contradiction [Schuster 1964]. This feature of human visual

perception has important consequences for graphics more broadly

[Hertzmann 2024]. For example, classic methods for creating multi-

perspective images and panoramas [Agarwala et al. 2006; Agrawala

et al. 2000; Roman et al. 2004] rely on people’s ability to integrate

multiple local perspectives into a coherent global perspective, even

when no single global perspective could explain the given image.

In this sense, the mescher is a first step towards developing flexible

geometric data structures that can represent the wide variety of

perspectively-inconsistent scenes that artists wish to depict.

2.4 Beyond impossible objects
Beyond impossible objects, the graphics community has long devel-

oped methods of automatically generating a wide variety of visual

illusions [Chi et al. 2008; Chu et al. 2010; Freeman et al. 1991; Ma

et al. 2013; Okano et al. 2010; Oliva et al. 2006] and perceptually-

ambiguous images [Burgert et al. 2023; Chandra et al. 2022; Geng

et al. 2023, 2024; Wang et al. 2020]. These methods are valuable not

only for creating interesting and entertaining images, but also for

helping understand human visual perception through techniques in

visual art [Cavanagh 2005; Livingstone 2022].

2.5 Differential mesh representations
Meschers are closely related to differential representations of meshes

[Sorkine 2006], which have applications in editing and deformation

[Alexa 2003; Lipman et al. 2004]. Like meschers, differential repre-

sentations store a vertex’s relationship with its neighbors, rather

than its absolute position. A key difference, however, is that mesch-

ers only require local integrability, not global. This is what allows
meschers to represent impossible objects.

Our representation is built on machinery of DEC [Desbrun et al.

2006; Hirani 2003], which offers a natural way to talk about differ-

ential quantities on meshes; see the survey by Crane et al. [2013]

for more information. Interestingly, this survey in fact alludes to a

connection between DEC and impossible objects, without pursuing

the topic in more detail [Crane et al. 2013, pg 103].

DEC and tools from vector field design have been used in other

scenarios in need of a local notion of integrability. For example,

branched covers of surfaces, which locally integrate to injective

parameterizations away from singular points, appear in algorithms

for quadrilateral remeshing [Bommes et al. 2023; Kälberer et al.

2007] and stripe pattern design [Knöppel et al. 2015].

3 THE MESCHER

What makes impossible objects impossible is that they cannot

be integrated into 3D, i.e., we cannot reconstruct absolute depth
values of the vertices in a way consistent with our depth perception.

Therefore, to model impossible objects in a way that corresponds to

perception, we must design a geometry representation that stores

topology, screen-space vertex positions, and encodes relative depths.
In general, impossible objects assume the existence of an observer

coordinate frame and can only be visualized when viewed head-on.

Therefore, we assume an orthographic camera and operate in its

coordinate system. From the perspective of our camera, the 𝑥 axis

is left to right, 𝑦 down to up, and 𝑧 backward to forward.

A mescher has the same topology as a typical manifold oriented

triangle mesh with (or without) boundary, with sets of triangle faces

F, edges E, and vertices V; we assign each edge in E and face in F
an orientation. To represent a mescher’s geometry, we store per-
vertex screen-space coordinates, 𝒙,𝒚 ∈ R |V | . For depths, we store a
value for relative depth per-edge, 𝜻 ∈ R |E | . Intuitively this means

that, if an edge 𝑖 ∈ E connects vertex 𝑝 ∈ V to vertex 𝑞 ∈ V then 𝜁𝑖
represents the signed change in depth from 𝑝 to 𝑞. The word “signed”

here signifies that the change from 𝑝 to 𝑞 is equal to the negative

change from 𝑞 to 𝑝 .

Looking at this construction from the perspective of discrete

exterior calculus (DEC) [Crane et al. 2013; Desbrun et al. 2006;

Hirani 2003], 𝒙 and 𝒚 are primal 0-forms (one scalar per vertex),

and 𝜻 are primal 1-forms (one value per edge). Primal 1-forms

represent the sum total change in a value across an edge; in our

case the change in depth. Leveraging this relationship, we can also

build up DEC machinery on a mescher. In particular, as the discrete

exterior derivatives only depend on the topology, their construction

follows in the same way as it does for regular meshes. This gives

us access to discrete exterior derivatives d01 ∈ {−1, 0, 1} |E |× |V | and
d12 ∈ {−1, 0, 1} |F |× |E | in the primal domain, which map 𝑘-forms to
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(𝑘 + 1)-forms. The transposes of these matrices d
⊤
12

and d
⊤
01

provide

exterior derivatives on the dual mesh. The remaining operators in

the discrete de Rham cohomology, ★0, ★1, and ★2, require some

more work to construct from a mescher, as will be discussed in the

following section.

Fig. 2. A mescher is defined by a triangle mesh where vertices are stored as
a pair of 2D screen-space coordinates (𝑥, 𝑦) and edges include a directed
relative depth offset 𝜁 . The 𝜁 ’s must integrate to zero around individual
triangles (orange), but not necessarily around other loops, as shown in the
bottom row.

3.1 Local Integrability and Geometry
We now articulate the precise space of meschers, which is smaller

than the space of all possible discrete 1-forms. In particular, consider

the example in Figure 2. Interpreting the 1-form 𝜻 as a difference

in depths per edges of a triangle, the left example is not integrable,
meaning that the depths do not sum to zero around the cycle of edges

in the triangle; the right example is locally integrable, meaning they

sum to zero. Local integrability implies that we can locally embed

the triangle, i.e., extract a consistent set of depths for the three

vertices given the depth of one—a condition that is needed for our

mescher to have normal vectors, triangle areas/interior angles, and

consequently a cotangent Laplacian operator. Local integrability

does not imply global integrability, which is not necessary for a

mescher, as shown in the third example; this property distinguishes

meschers from globally-embeddable shapes.

In the language of DEC and recalling that d12 computes oriented

sums of 1-forms around triangles, the local integrability condition

can be expressed as a linear constraint:

d12𝜻 = 0. (1)

This condition is connected to the discrete Poincaré lemma [Desbrun

et al. 2005]. We will discuss in Section 3.3 how we obtain a feasible

𝜻 to initialize our editing system.

Once we have a 𝜻 satisfying the constraint above, we can obtain

discrete Hodge star matrices to complete our DEC formulation. For

each triangle on the mesh, we locally integrate 𝜻 to obtain depths for

the three vertices (relative to one of the vertices); the screen-space

coordinates of the vertices are stored in 𝒙 and 𝒚. Together, these
coordinates allow us to compute triangle areas and half-edge cotan-

gent weights, which we store in diagonal matrices ★0 ∈ R |V |× |V |
(one-ring barycentric areas),★1 ∈ R |E |× |E | (cotangent weights), and
★2 ∈ R |F |× |F | (inverse triangle areas).

With the full set of DEC operators in place, we can use the discrete

Hodge decomposition [Crane et al. 2013; Desbrun et al. 2006] to

characterize the space of mescher 1-forms. In particular, any primal

1-form on a triangle mesh can be written as the sum of a curl-free

component, a divergence-free component, and a harmonic compo-

nent. The constraint in (1) implies that 𝜻 has no divergence-free

component, leaving the factorization:

𝜻 = 𝑑01𝒛 + 𝝎, (2)

where 𝒛 ∈ R |V | and 𝝎 is the harmonic component, satisfying

d12𝝎 = 0 and ★−1
0

d
⊤
01
★1 𝝎 = 0.

Notice that when there is no harmonic component, i.e. when

𝝎 = 0, the mescher can be embedded in 3D space, Hence, meschers

can represent both possible and impossible objects, and a mescher

can be classified as possible or impossible by testing whether 𝝎 = 0.
In contrast to previous work which represents impossible objects

through cutting or bending (see Section 2.1), our representation

is compatible with many downstream geometry processing oper-

ations (see Section 4). The two discrete differential operators we

make use of are the standard 0-form Laplacian, Δ0 B ★−1
0

d
⊤
01
★1 d01,

which use to answer intrinsic distance queries and perform inverse

rendering in Sections 4.3 and 4.5, and the 1-form Hodge Laplacian,

Δ1 B ★−1
1

d
⊤
12
★2 d12 + d01★

−1
0

d
⊤
01
★1, which can be used for smooth-

ing 1-forms as in Section 4.4.

Remark (Intrinsic geometry processing). It is also possible to
explain meschers in terms of edge lengths. The operators above involve
only triangle areas and interior angles, all of which are recoverable
from the discrete metric.

3.2 Finite-element Operators

While meschers cannot be embedded globally, we can construct

a local coordinate frame for each face. Differential quantities, such

as gradients, only depend on the local tangent spaces, not on the

global embedding. This means that, in addition to DEC, we can also

construct standard 1
st
-order finite-element operators. This becomes

useful in Section 4.3, where we need access to per-face gradients of

a function. In our work, we use the gradients,𝐺𝑥 ,𝐺𝑦,𝐺𝑧 ∈ R |F |× |V | ,
and the diagonal area matrix,𝐴 ∈ R |F |× |F | . As expected, we can ver-

ify that we can construct a discrete Laplacian using finite elements,

and that 𝐺⊤𝐴𝐺 = d
⊤
01
★1 d01 and 𝐴 = ★−1

2
.

3.3 Obtaining a Mescher

Having explained the inner workings of a mescher, we now briefly

discuss how we can obtain one. Possibly the simplest way is to

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 3. Beautiful View. Using the heat method, we can compute geodesic
distances on meschers (Section 4.3). Here, we show the distance measured
from the front steps.

convert one from a “cut” 3D embedding of the shape, commonly

used by previous work (see Section 2.1).

While impossible surfaces are difficult to reason about, creating

a cut representation in 3D is an artistic practice like any other,

with a vibrant community of artists and a plethora of video and

textual guides [Elber 2011; Gárate 2020, 2023], books [Ernst 1986], as

well as online libraries containing hundreds of different impossible

objects [Alexeev 2001; Elber 2012]. Other approaches for obtaining

impossible objects include direct modeling tools [Wu et al. 2010],

procedural generation [Li et al. 2024], or inverse rendering (see §4.5,

Figure 7).

This representation can be modeled using standard software;

converting it to a mescher then involves extracting 𝜻 from the 3D

mesh and merging duplicate vertices at the cut as specified by the

user. If the cut 3D model is imprecise, merging two pairs of vertices

that are connected by an edge might lead to a conflict between

two different values for 𝜻 along the merged edge. Simple per-edge

merging operations like averaging, however, may yield a 1-form
®𝜁

that does not satisfy Equation 1. This and other similar situations

necessitate the need for a means to project 𝜻 back onto the feasible

set.

Given an unconstrained 𝜻 ′, we can obtain a 𝜻 consistent with

Eq. 1 by solving the following least-squares problem:

min

𝜻

1

2

∥𝜻 − 𝜻 ′∥2

s.t. d12𝜻 = 0.
(3)

Introducing a Lagrange multiplier 𝝀, we obtain the optimal 𝜻 by

solving a linear system:[
𝐼 |E | d

⊤
12

d12 0

] [
𝜻
𝝀

]
=

[
𝜻 ′

0

]
. (4)

In scenarios where there are multiple conflicting values for each

edge’s 𝜁 , we minimize its averaged squared difference to both; a

straightforward calculation shows that this is identical to solving (3)

where the corresponding element of 𝜻 ′ contains the average of the
conflicting values.

Remark. Ideally, in (3) the norm ∥𝜻 − 𝜻 ′∥2, would be weighted
by ★1, i.e., ∥𝜻 − 𝜻 ′∥2★ = (𝜻 − 𝜻 ′)⊤ ★1 (𝜻 − 𝜻 ′). However, there is a
“chicken-and-egg problem:” In the absence of a consistent 𝜻 , we cannot
compute a geometric ★1. Therefore, instead of resorting to a complex
nonlinear optimization problem, for this projection operator we opt
for the simpler solution of using the purely topological★1 B 1. This is
equivalent to performing a discrete Hodge decomposition of 𝜻 ′ using
unit weights for ★1 and setting the divergence-free component to zero.

Once we have a locally consistent 𝜻 , we can render the mescher

and compute differential operators, opening doors to various graph-

ics applications (§4).

3.4 Depth Ordering

A strong visual cue for depth and connectivity are so-called T-
junctions. An example of this is visible in Figure 4, where our percept

is that the middle part of the horizontal bar is in front of the middle

part of the vertical bar, despite the object looking flat otherwise.

So far, we have been dealing with representing the local relative

depth ordering of connected geometry, meaning that we require one

additional component to our model that would allow us to represent

the global depth ordering of disconnected local patches.

We thus represent a partial depth ordering to the faces of a

mescher via a directed acyclic graph, where an edge between faces 𝑖

and 𝑗 represents that 𝑖 is perceived to be behind 𝑗 . This is a separate

data structure to the actual mesh, since a graph edge does not imply

connectivity or geometry in the same way a mesh edge does. As the

ordering is partial, most faces do not have any depth relationship to

each other, which avoids having to assign an absolute depth order

to local patches of an impossible object.

Fig. 4. Window. This mescher is globally integrable: naïvely rendering it
makes the bars intersect at the same depth (left). To create an impossibil-
ity, an additional form of depth ordering is necessary (Section 3.4). After
introducing depth ordering, we can renderWindow as an impossible object.
Here, we further subdivide the mescher and apply our smoothing operator
to create specular highlights that emphasize the impossible depth offset.

When converting a cut representation into amescher, we compute

intersections between all pairs of triangles and only enforce the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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ordering for those that do intersect. To modify the initial ordering,

a user can choose two groups of faces and assign one of them to be

in front of the other. We warn the user in case of graph cycles.

It is possible no valid ordering is possible for a given construction.

For example, if the Window mescher in Figure 4 were represented

with few long triangles, a cycle would occur. This problem disap-

pears under refinement, as the ordering is only specified for local

patches. We cannot exclude—but have not observed—pathological

examples where refinement might not help.

4 OPERATIONS ON MESCHERS

Having built up the mescher data structure, we can move on

to some practical example applications. We start of with the foun-

dational graphics operations of rendering and lighting (§4.1), and

mescher subdivision (§4.2), before moving on to more complex op-

erations which make use of our differential operators in (§4.3-§4.5).

4.1 Rendering

To render a mescher, we flatten its triangles by setting their abso-

lute depths to zero and use per-face or per-vertex normals derived

from 𝜻 during shading. Impossible objects are only compatible with

directional and environment map illumination. This is due to the

fact that, if the incoming radiance depends only on the direction

from which the light is coming, the shading becomes invariant to

translations in R3. More complex emitters such as area lights re-

quire knowledge about the absolute 3D positions of objects and

would therefore naïvely be incompatible with meschers. Meschers

are, however, compatible with various local shading models; see

Figure 9 for a simple example.

For a rendering to respects the depth ordering from Section 3.4,

we construct a linear extension from the ordering graph, i.e., a total

order that retains the ordering relationships of the partial order. In

practice, this is accomplished by topologically sorting the depth

ordering graph. Once we have a total ordering, we can overlay

triangle renders in the order they appear in the topological sort.

Remark. While our rendering procedure is in essence a normal map,
a mescher is not the same as a mesh with a normal map. One could
attempt to represent impossible objects using triangles with arbitrary
normals. However, this would remove the guarantee that neighboring
triangles would have the same value of 𝜁 for their shared edge. If one
were to formulate a least squares problem similar to in Equation 3 to
recover consistent 𝜁 from arbitrary normals, this would in effect bring
us back to the mescher.

4.2 Subdivision

Modeled geometry comes in varying levels of coarseness and

further subdivision is often necessary to make them usable with

downstream geometry processing tools. While subdividing 1-forms

on general subdivision surfaces is possible [de Goes et al. 2016], our

reason for subdividing is to make finite elements simulation work

and not visual. Therefore, we opt for the comparably simpler Loop

Fig. 5. Impawssible Dog.Meschers support relighting. Here, we show the
same mescher rendered with four different lighting conditions. This shows
that some lighting conditions create a stronger illusory percept than others.

subdivision [Loop 1987] and leave other subdivision schemes for

future work.

As in Loop subdivision on standard triangle meshes, we begin

by introducing a new vertex at the center-point of a triangle’s edge,

and reconnect the topology to create a total of 4 new triangles. The

𝑥 and 𝑦 positions of the vertices are assigned as expected. Subdi-

viding the relative depth 𝜻 is possible as we know that the depth

increases linearly between two vertices due to our orthographic

camera assumption. Since the 4 new triangles are similar to the orig-

inal triangle with a scaling factor of one half, a subdivided edge’s 𝜻
will equal to the one half of the 𝜻 of the edge to which it is similar.

Subdivision was used to generate virtually all of our results, see

Figures 1 4, 6, 3, and 8.

4.3 Heat Diffusion and Geodesics

A mescher has a discrete metric, enabling intrinsic geometry

processing despite not being isometrically embeddable in R3. A
classical intrinsic problem is solving the heat equation on the surface

of a shape. Starting from some initial condition 𝒖0 ∈ R |V | , we solve
for 𝒖 the linear system given by

(𝐼 + 𝑡Δ)𝒖 = 𝒖0, (5)

where 𝑡 is the heat diffusion parameter, and Δ the 0-form Laplacian

operator from Section 3.1. See Figure 1 for an example of heat

diffusion on an impossible object.

Heat diffusion and operations involving the FEM operators in

Section 3.2 are sufficient to compute for shortest paths on a mescher

using the heat method for distance computation [Crane et al. 2017].

For a short recap of the method, we first initialize 𝒖0 to be one at the
source vertex and zero elsewhere and compute 𝒖 for a small 𝑡 . Next,

we compute and then normalize the gradient of the diffused function

using the FEM gradient operator: 𝒈 = 𝐺𝒖
∥𝐺𝒖 ∥2 . To finally obtain the

distance 𝒅, we re-integrate the normalized gradient by solving a
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Poisson equation, 𝐺𝑇𝐴𝐺𝒅 = −𝐺𝑇𝐴𝒈. We demonstrate intrinsic

distance computation on impossible objects in Figures 1, 3, 8.

4.4 Smoothing

A common task during modeling is to smooth out the rough

edges of a modeled mesh. This can be accomplished via Laplacian

smoothing [Desbrun et al. 2023]. On embeddable meshes, Laplacian

smoothing applies the heat diffusion operator in (5) to the 3D co-

ordinates of the mesh. In our case, we can apply this strategy to 𝒙
and 𝒚, but it is not obvious how to smooth the 1-form 𝜻 .

To complete our smoothing operator, it is helpful to leverage the

structure of 𝜻 . Recall from Equation 2 and Section 3.3 that 𝜻 consists

of a harmonic component 𝝎, and a curl-free component, d01𝒛. We

know that the harmonic component cannot be further smoothed

in this manner, as it is in the null space of the 𝑘-form Laplacian.

This conveniently leaves only the curl-free component, d01𝒛, which
can be obtained via a Hodge decomposition of 𝜁 . Since 𝒛 is a primal

0-form, we can apply standard Laplacian smoothing to it and then

combine it back with 𝜔 . In summary, our smoothing operator for 𝜻
is,

𝜻1 = 𝝎0 + d0,1

(
(𝐼 + 𝑡Δ)−1𝒛 − 𝒛

)
. (6)

Since meschers lack a divergence-free component, this species of

smoothing is equivalent to smoothing using the 1-formHodge Lapla-

cian in Section 3.1. We demonstrate the effect of our smoothing

operator with varying degrees of smoothing in Figure 6.

Fig. 6. Heart. We can apply Laplacian smoothing to meschers (Section 4.4).
Smoothing can be used for stylization, or to smooth out modeling imper-
fections. Here, we subdivide and smooth the mescher Heart using various
values of the heat diffusion parameter 𝑡 . We can independently smooth the
screen-space components (top row) and depth component (middle row), or
smooth both jointly (bottom row).

4.5 Inverse Rendering

Robustly inverse-rendering even standard (embeddable) triangle

meshes is an active area of research: the key challenge is that gra-

dients are sparse, only defined on the silhouette of an object [Li

et al. 2018]. One way to make inverse rendering more robust is to

use Sobolev gradient descent [Nicolet et al. 2021], which effectively

smooths out the sparse gradients over the surface. This algorithm

only requires a Laplacian—hence, it can be applied to meschers.

Given a ground truth RGB image, we optimize a mescher’s ge-

ometry so that it matches the target image when passed through

the SoftRas differentiable rasterizer [Liu et al. 2019] with fixed light-

ing. Specifically, we optimize the mean squared error between the

rendered image and the target, and use separate 𝜎 parameters in

SoftRas for optimizing the screen-space (𝑥,𝑦) coordinates and the

relative depth 𝜁 . In practice, this means that alternate between de-

scending on 𝒙,𝒚, and on 𝜻 , rendering images using different 𝜎 for

each. Following Nicolet et al. [2021], we optimize this energy using

Sobolev gradients. Assuming 𝒈 is the gradient with respect to 𝒙 and

𝒚 of our energy, we compute the Sobolev gradient �̂� as:

�̂� = (𝐼 + 𝜆Δ)−1𝒈. (7)

We use the same diffusion parameter 𝜆 as Nicolet et al. [2021].

During inverse rendering, we discard the partial ordering graph

data structure and rely on a differentiable global ordering by assign-

ing a scalar depth offset to each triangle. A partial ordering can still

be extracted after the optimization by searching for overlaps and

comparing triangle scalar depth values.

Figure 7 demonstrates a proof-of-concept of our inverse rendering

pipeline. We initialize our shape to a standard (i.e., possible) torus

which is then optimized to look more like the impossible triangle.

Finally, we can check that we are indeed recovering an impossible

object by examining the mescher’s harmonic component.

Fig. 7. Penrose triangle.We can use gradient-based inverse rendering to
recover the Penrose triangle from a source image (Section 4.5). The resulting
mescher really does represent impossible geometry: that is, we can verify
that it has a nonzero harmonic component 𝝎.

4.6 Embedding Meschers
We can easily convert meschers into the two existing representations

of impossible objects discussed in Section 2.1.

• To recover a cut embedding, we can allow a user to specify a cut

on the mescher. Then, we integrate the surface around that cut

using a simple breadth-first traversal on its edges.

• To recover a bent embedding of a mescher, we have to remove

the harmonic component from 𝜻 and then globally integrate the
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resulting field. Luckily, that integral is already given to us as

part of the Hodge decomposition in the form of 𝒛 from Equa-

tion 2. Therefore, 𝒛 is a valid choice for the depth component of a

mescher.

In this way, meschers are a natural generalization of both of these

approaches. In fact, they capture the “best of all worlds”: as we

show in Figure 8, meschers are the only representation that can

support the full set of rendering and geometry processing oper-

ations we consider. For example, while all three representations

support rendering, the bent representation leads to artifacts when

relighting, and both cut and bent representations lead to artifacts

when smoothing and when computing geodesic distances.

5 IMPLEMENTATION DETAILS
We implementMeschers primarily using PyTorch [Paszke et al. 2019]

and relied on the NetworkX [Hagberg et al. 2008] graph processing

library for the depth ordering. For all of our experiments, we used

a computer with an Intel i9-13900 CPU, 32 GB of memory, and

an Nvidia GeForce RTX 4090. To implement a user interface and

rendering capabilities, we relied on the ModernGL [Dombi 2020]

and Dear ImGUI [Cornut 2014] libraries. We use PyTorch3D [Ravi

et al. 2020] for its implementation of Softras [Liu et al. 2019].

Fig. 8. Mission: Impossible, Mission: Accomplished. Here, we compare our
method to the two classes of existing methods for rendering impossible
geometry. While all three methods support rendering, only our method
supports a full set of rendering and geometry processing operations. The
bent representation leads to artifacts when relighting, due to the perturbed
normals. Both representations lead to artifacts when smoothing and when
computing geodesic distances.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK
In this paper, we presented a new geometric representation for im-

possible objects. Our representation, themescher, is designed around

the insight that human visual perception is local rather than global.

The mescher thus represents locally-consistent geometry while re-

laxing the requirement that the geometry be globally-consistent.

Conveniently, local consistency is all that is needed for a wide vari-

ety of classic geometry processing algorithms. Hence, the mescher

allows for not only rendering and relighting, but also operations

like subdivision, Laplacian smoothing, heat diffusion, geodesic dis-

tance queries, and inverse rendering, in a way that aligns with our

perceptual intuitions.

To achieve this, we relied on DEC, which

necessitates that its inputs are orientable and

manifold. If we wished to represent a non-

orientable impossible object, e.g., if we wished

to insert the Impossible Lettuce (see inset)

into the bagel in Figure 1, we would have to

consider alternative formulations.

All of our meschers were modeled in an

external tool, and then made impossible using

our software (Section 3.3). It remains an open question of what a

usable interface for directly modeling meschers is. An alternative

to modeling meschers is to inverse render them, as discussed in

Section 4.5. While our experiment serves as the, to our knowledge,

first proof of concept of rendering a mescher, we trust that there

is still room for improvement on this front. An interesting avenue

for future work would be to create a mescher modeling interface

that relies on inverse rendering, by, e.g., allowing users to paint a

harmonic component onto a possible object.

There are many natural steps for improving meschers’ renderings.

For example, have not experimentedwith rotatingmeschers as when

we apply a rotation to the differential coordinates, the harmonic

component becomes “mixed in” into 𝒙 and 𝒚, which would require

reprojecting them back onto the space of exact forms. Furthermore,

one can imagine combining meschers with previous work to render

them with shadows or transparency.

Beyond rendering, our work has only scratched the surface of

geometry processing applications enabled by the mescher represen-

tation. While we compute gradients on a mescher in Section 4.3,

there might be other extrinsic operations one might want to per-

form, such as, e.g., geometric flows. Similarly, DEC is a first-order

discretization of a surface and there might be applications, such as

computing occluding contours of a mescher [Capouellez et al. 2023],

where a higher order discretization might be useful.

In computer vision, implicit geometry representations (e.g. signed

distance functions) have seen great success due to their ability to

change topology during optimization, posing the natural question

of if it is possible to develop a mescher-like implicit representation.

Lastly, since our representation is inspired by vision science, we

can conversely ask whether it would be in turn useful to vision

science research. For example, an exciting question one might ask

is whether shortest paths computed on a mescher match those that

a human would manually trace out.
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Perceptually-informed and human-centered models can aid the

understanding human vision and the design of computer vision

systems, and are central in creativity and art. Through our study of

impossible objects, we hope to encourage work not only on realistic

graphics models, but also those that become possible in the context

of human perception.

Fig. 9. Impossible Geometric Data Processing. Just like in ordinary meshes,
meschers can be rendered outwith a variety of shading techniques, including
both flat (top) and smooth (bottom) shading.
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